BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 21410018)

  • 1. Diffusion of dimethyl sulfoxide in tissue engineered collagen scaffolds visualized by computer tomography.
    Bernemann I; Manuchehrabadi N; Spindler R; Choi J; Wolkers WF; Bischof JC; Glasmacher B
    Cryo Letters; 2010; 31(6):493-503. PubMed ID: 21410018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation and simulated imaging of pseudo-scaffolds to aid characterisation by X-ray micro CT.
    Morris DE; Mather ML; Crowe JA
    Biomaterials; 2009 Sep; 30(25):4233-46. PubMed ID: 19473700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of the co-transport of cryoprotective agents in a porous medium as a model tissue.
    Xu X; Cui ZF
    Biotechnol Prog; 2003; 19(3):972-81. PubMed ID: 12790664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of bone ingrowth into porous biomaterials using MICRO-CT.
    Jones AC; Arns CH; Sheppard AP; Hutmacher DW; Milthorpe BK; Knackstedt MA
    Biomaterials; 2007 May; 28(15):2491-504. PubMed ID: 17335896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of optimal techniques for cryopreservation of human platelets. I. Platelet activation during cold storage (at 22 and 8 degrees C) and cryopreservation.
    Gao DY; Neff K; Xiao HY; Matsubayashi H; Cui XD; Bonderman P; Bonderman D; Harvey K; McIntyre JA; Critser J; Miraglia CC; Reid T
    Cryobiology; 1999 May; 38(3):225-35. PubMed ID: 10328912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-lapsed imaging for in-process evaluation of supercritical fluid processing of tissue engineering scaffolds.
    Mather ML; Brion M; White LJ; Shakesheff KM; Howdle SM; Morgan SP; Crowe JA
    Biotechnol Prog; 2009; 25(4):1176-83. PubMed ID: 19572403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-engineered matrices as functional delivery systems: adsorption and release of bioactive proteins from degradable composite scaffolds.
    Cushnie EK; Khan YM; Laurencin CT
    J Biomed Mater Res A; 2010 Aug; 94(2):568-75. PubMed ID: 20198692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Experimental studies on preparation and property of scaffold material of bio-derived bone loading wo-1].
    Liang J; Yang Z; Li X; Luo J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Jun; 19(6):464-7. PubMed ID: 16038465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts.
    Park IS; Kim SH; Kim YH; Kim IH; Kim SH
    J Biomater Sci Polym Ed; 2009; 20(11):1645-60. PubMed ID: 19619403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering.
    Murphy CM; Haugh MG; O'Brien FJ
    Biomaterials; 2010 Jan; 31(3):461-6. PubMed ID: 19819008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyurethane scaffold formation via a combination of salt leaching and thermally induced phase separation.
    Heijkants RG; van Calck RV; van Tienen TG; de Groot JH; Pennings AJ; Buma P; Veth RP; Schouten AJ
    J Biomed Mater Res A; 2008 Dec; 87(4):921-32. PubMed ID: 18228268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of X-ray tomography to map crystalline and amorphous phases in frozen biomaterials.
    Bischof JC; Mahr B; Choi JH; Behling M; Mewes D
    Ann Biomed Eng; 2007 Feb; 35(2):292-304. PubMed ID: 17136446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic scaffold morphology controls human dermal connective tissue formation.
    Wang H; Pieper J; Péters F; van Blitterswijk CA; Lamme EN
    J Biomed Mater Res A; 2005 Sep; 74(4):523-32. PubMed ID: 16028236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering.
    O'Brien FJ; Harley BA; Waller MA; Yannas IV; Gibson LJ; Prendergast PJ
    Technol Health Care; 2007; 15(1):3-17. PubMed ID: 17264409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryopreservation of hMSCs seeded silk nanofibers based tissue engineered constructs.
    Bissoyi A; Pramanik K; Panda NN; Sarangi SK
    Cryobiology; 2014 Jun; 68(3):332-42. PubMed ID: 24759299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of cryopreservation of engineered tissues with one-dimensional geometry.
    Cui ZF; Dykhuizen RC; Nerem RM; Sembanis A
    Biotechnol Prog; 2002; 18(2):354-61. PubMed ID: 11934307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Fabrication of a novel cartilage acellular matrix scaffold for cartilage tissue engineering].
    Yang Q; Peng J; Lu S; Sun M; Huang J; Zhang L; Xu W; Zhao B; Sui X; Yao J; Yuan M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Mar; 22(3):359-63. PubMed ID: 18396722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y
    Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of 'in air' freezing on post-thaw recovery of Callithrix jacchus mesenchymal stromal cells and properties of 3D collagen-hydroxyapatite scaffolds.
    Mutsenko V; Knaack S; Lauterboeck L; Tarusin D; Sydykov B; Cabiscol R; Ivnev D; Belikan J; Beck A; Dipresa D; Lode A; El Khassawna T; Kampschulte M; Scharf R; Petrenko AY; Korossis S; Wolkers WF; Gelinsky M; Glasmacher B; Gryshkov O
    Cryobiology; 2020 Feb; 92():215-230. PubMed ID: 31972153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.