These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 21410139)
1. Light-induced conformational changes in photosynthetic reaction centers: redox-regulated proton pathway near the dimer. Deshmukh SS; Williams JC; Allen JP; Kálmán L Biochemistry; 2011 Apr; 50(16):3321-31. PubMed ID: 21410139 [TBL] [Abstract][Full Text] [Related]
2. Light-induced conformational changes in photosynthetic reaction centers: dielectric relaxation in the vicinity of the dimer. Deshmukh SS; Williams JC; Allen JP; Kálmán L Biochemistry; 2011 Jan; 50(3):340-8. PubMed ID: 21141811 [TBL] [Abstract][Full Text] [Related]
3. Effects of hydrogen bonding to a bacteriochlorophyll-bacteriopheophytin dimer in reaction centers from Rhodobacter sphaeroides. Allen JP; Artz K; Lin X; Williams JC; Ivancich A; Albouy D; Mattioli TA; Fetsch A; Kuhn M; Lubitz W Biochemistry; 1996 May; 35(21):6612-9. PubMed ID: 8639609 [TBL] [Abstract][Full Text] [Related]
4. Influence of Asn/His L166 on the hydrogen-bonding pattern and redox potential of the primary donor of purple bacterial reaction centers. Ivancich A; Mattioli TA Biochemistry; 1997 Mar; 36(10):3027-36. PubMed ID: 9062134 [TBL] [Abstract][Full Text] [Related]
5. Conformation-activated protonation in reaction centers of the photosynthetic bacterium Rhodobacter sphaeroides. Kálmán L; Maróti P Biochemistry; 1997 Dec; 36(49):15269-76. PubMed ID: 9398255 [TBL] [Abstract][Full Text] [Related]
6. Correlation of proton release and electrochromic shifts of the optical spectrum due to oxidation of tyrosine in reaction centers from Rhodobacter sphaeroides. Kálmán L; LoBrutto R; Narváez AJ; Williams JC; Allen JP Biochemistry; 2003 Nov; 42(45):13280-6. PubMed ID: 14609339 [TBL] [Abstract][Full Text] [Related]
7. Evidence for delocalized anticooperative flash induced proton binding as revealed by mutants at the M266His iron ligand in bacterial reaction centers. Cheap H; Tandori J; Derrien V; Benoit M; de Oliveira P; Koepke J; Lavergne J; Maroti P; Sebban P Biochemistry; 2007 Apr; 46(15):4510-21. PubMed ID: 17378585 [TBL] [Abstract][Full Text] [Related]
8. Effects of hydrogen bonds on the redox potential and electronic structure of the bacterial primary electron donor. Ivancich A; Artz K; Williams JC; Allen JP; Mattioli TA Biochemistry; 1998 Aug; 37(34):11812-20. PubMed ID: 9718304 [TBL] [Abstract][Full Text] [Related]
9. Uncoupling of electron and proton transfers in the photocycle of bacterial reaction centers under high light intensity. Gerencsér L; Maróti P Biochemistry; 2006 May; 45(17):5650-62. PubMed ID: 16634646 [TBL] [Abstract][Full Text] [Related]
10. Dependence of tyrosine oxidation in highly oxidizing bacterial reaction centers on pH and free-energy difference. Kálmán L; Narváez AJ; LoBrutto R; Williams JC; Allen JP Biochemistry; 2004 Oct; 43(40):12905-12. PubMed ID: 15461463 [TBL] [Abstract][Full Text] [Related]
11. ENDOR studies of the primary donor cation radical in mutant reaction centers of Rhodobacter sphaeroides with altered hydrogen-bond interactions. Rautter J; Lendzian F; Schulz C; Fetsch A; Kuhn M; Lin X; Williams JC; Allen JP; Lubitz W Biochemistry; 1995 Jun; 34(25):8130-43. PubMed ID: 7794927 [TBL] [Abstract][Full Text] [Related]
12. Trapped tyrosyl radical populations in modified reaction centers from Rhodobacter sphaeroides. Narváez AJ; LoBrutto R; Allen JP; Williams JC Biochemistry; 2004 Nov; 43(45):14379-84. PubMed ID: 15533042 [TBL] [Abstract][Full Text] [Related]
13. Light-induced conformational changes in photosynthetic reaction centers: impact of detergents and lipids on the electronic structure of the primary electron donor. Deshmukh SS; Akhavein H; Williams JC; Allen JP; Kalman L Biochemistry; 2011 Jun; 50(23):5249-62. PubMed ID: 21561160 [TBL] [Abstract][Full Text] [Related]
14. Electron-nuclear and electron-electron double resonance spectroscopies show that the primary quinone acceptor QA in reaction centers from photosynthetic bacteria Rhodobacter sphaeroides remains in the same orientation upon light-induced reduction. Flores M; Savitsky A; Paddock ML; Abresch EC; Dubinskii AA; Okamura MY; Lubitz W; Möbius K J Phys Chem B; 2010 Dec; 114(50):16894-901. PubMed ID: 21090818 [TBL] [Abstract][Full Text] [Related]
15. Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides. Lin X; Murchison HA; Nagarajan V; Parson WW; Allen JP; Williams JC Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10265-9. PubMed ID: 7937938 [TBL] [Abstract][Full Text] [Related]
16. Energetics for oxidation of a bound manganese cofactor in modified bacterial reaction centers. Kálmán L; Williams JC; Allen JP Biochemistry; 2011 Apr; 50(16):3310-20. PubMed ID: 21375274 [TBL] [Abstract][Full Text] [Related]
17. Lipid binding to the carotenoid binding site in photosynthetic reaction centers. Deshmukh SS; Tang K; Kálmán L J Am Chem Soc; 2011 Oct; 133(40):16309-16. PubMed ID: 21894992 [TBL] [Abstract][Full Text] [Related]
18. Proton release upon oxidation of tyrosine in reaction centers from Rhodobacter sphaeroides. Kálmán L; Williams JC; Allen JP FEBS Lett; 2003 Jun; 545(2-3):193-8. PubMed ID: 12804774 [TBL] [Abstract][Full Text] [Related]
19. Proton release due to manganese binding and oxidation in modified bacterial reaction centers. Kálmán L; Thielges MC; Williams JC; Allen JP Biochemistry; 2005 Oct; 44(40):13266-73. PubMed ID: 16201752 [TBL] [Abstract][Full Text] [Related]
20. Electrostatic influence of QA reduction on the IR vibrational mode of the 10a-ester C==O of HA demonstrated by mutations at residues Glu L104 and Trp L100 in reaction centers from Rhodobacter sphaeroides. Breton J; Nabedryk E; Allen JP; Williams JC Biochemistry; 1997 Apr; 36(15):4515-25. PubMed ID: 9109660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]