These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 21410185)
21. Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age. Gannon J; Doran P; Kirwan A; Ohlendieck K Eur J Cell Biol; 2009 Nov; 88(11):685-700. PubMed ID: 19616867 [TBL] [Abstract][Full Text] [Related]
22. Contribution of a selected fungal population to the volatile compounds on dry-cured ham. Martín A; Córdoba JJ; Aranda E; Córdoba MG; Asensio MA Int J Food Microbiol; 2006 Jul; 110(1):8-18. PubMed ID: 16564595 [TBL] [Abstract][Full Text] [Related]
23. A proteomic-based approach for detection of chicken in meat mixes. Sentandreu MA; Fraser PD; Halket J; Patel R; Bramley PM J Proteome Res; 2010 Jul; 9(7):3374-83. PubMed ID: 20433202 [TBL] [Abstract][Full Text] [Related]
24. Sequence and expression of amphioxus alkali myosin light chain (AmphiMLC-alk) throughout development: implications for vertebrate myogenesis. Holland LZ; Pace DA; Blink ML; Kene M; Holland ND Dev Biol; 1995 Oct; 171(2):665-76. PubMed ID: 7556945 [TBL] [Abstract][Full Text] [Related]
25. Antilisterial peptides from Spanish dry-cured hams: Purification and identification. Castellano P; Mora L; Escudero E; Vignolo G; Aznar R; Toldrá F Food Microbiol; 2016 Oct; 59():133-41. PubMed ID: 27375254 [TBL] [Abstract][Full Text] [Related]
26. Titin-derived peptides as processing time markers in dry-cured ham. Gallego M; Mora L; Aristoy MC; Toldrá F Food Chem; 2015 Jan; 167():326-39. PubMed ID: 25148995 [TBL] [Abstract][Full Text] [Related]
27. Proteomic profile of dry-cured ham relative to PRKAG3 or CAST genotype, level of salt and pastiness. Skrlep M; Candek-Potokar M; Mandelc S; Javornik B; Gou P; Chambon C; Santé-Lhoutellier V Meat Sci; 2011 Aug; 88(4):657-67. PubMed ID: 21414725 [TBL] [Abstract][Full Text] [Related]
28. Strategic use of immunoprecipitation and LC/MS/MS for trace-level protein quantification: myosin light chain 1, a biomarker of cardiac necrosis. Berna MJ; Zhen Y; Watson DE; Hale JE; Ackermann BL Anal Chem; 2007 Jun; 79(11):4199-205. PubMed ID: 17447729 [TBL] [Abstract][Full Text] [Related]
29. Characterization and ontogenetic expression analysis of the myosin light chains from the fast white muscle of mandarin fish Siniperca chuatsi. Chu WY; Chen J; Zhou RX; Zhao FL; Meng T; Chen DX; Nong XX; Liu Z; Lu SQ; Zhang JS J Fish Biol; 2011 Apr; 78(4):1225-38. PubMed ID: 21463317 [TBL] [Abstract][Full Text] [Related]
30. Coordinate changes of myosin light and heavy chain isoforms during forced fiber type transitions in rabbit muscle. Leeuw T; Pette D Dev Genet; 1996; 19(2):163-8. PubMed ID: 8900049 [TBL] [Abstract][Full Text] [Related]
31. Long term bed rest with and without vibration exercise countermeasures: effects on human muscle protein dysregulation. Moriggi M; Vasso M; Fania C; Capitanio D; Bonifacio G; Salanova M; Blottner D; Rittweger J; Felsenberg D; Cerretelli P; Gelfi C Proteomics; 2010 Nov; 10(21):3756-74. PubMed ID: 20957755 [TBL] [Abstract][Full Text] [Related]
32. The sarcomeric myosin heavy chain gene family in the dog: analysis of isoform diversity and comparison with other mammalian species. Maccatrozzo L; Caliaro F; Toniolo L; Patruno M; Reggiani C; Mascarello F Genomics; 2007 Feb; 89(2):224-36. PubMed ID: 16989978 [TBL] [Abstract][Full Text] [Related]
33. [Myosin light chains of skeletal and cardiac muscles of ground squirrel Citillus undulatus in different periods of hibernation]. Zuĭkova OV; Osipova DA; Vikhliantsev IM; Malyshev SL; Udal'tsov SN; Podlubnaia ZA Biofizika; 2005; 50(5):797-802. PubMed ID: 16248153 [TBL] [Abstract][Full Text] [Related]
34. Essential Light Chains of Myosin and Their Role in Functioning of the Myosin Motor. Logvinova DS; Levitsky DI Biochemistry (Mosc); 2018 Aug; 83(8):944-960. PubMed ID: 30208831 [TBL] [Abstract][Full Text] [Related]
35. Evolution of oxidised peptides during the processing of 9months Spanish dry-cured ham. Gallego M; Mora L; Toldrá F Food Chem; 2018 Jan; 239():823-830. PubMed ID: 28873640 [TBL] [Abstract][Full Text] [Related]
37. Lipid and protein oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high hydrostatic pressure. Fuentes V; Ventanas J; Morcuende D; Estévez M; Ventanas S Meat Sci; 2010 Jul; 85(3):506-14. PubMed ID: 20416822 [TBL] [Abstract][Full Text] [Related]
38. Label-free proteomics reveals the mechanism of bitterness and adhesiveness in Jinhua ham. Zhou CY; Wang C; Tang CB; Dai C; Bai Y; Yu XB; Li CB; Xu XL; Zhou GH; Cao JX Food Chem; 2019 Nov; 297():125012. PubMed ID: 31253295 [TBL] [Abstract][Full Text] [Related]
39. Effect of protease EPg222 obtained from Penicillium chrysogenum isolated from dry-cured ham in pieces of pork loins. Benito MJ; Rodríguez M; Sosa MJ; Martín A; Córdoba JJ J Agric Food Chem; 2003 Jan; 51(1):106-11. PubMed ID: 12502393 [TBL] [Abstract][Full Text] [Related]
40. Bioactive peptides generated in the processing of dry-cured ham. Toldrá F; Gallego M; Reig M; Aristoy MC; Mora L Food Chem; 2020 Aug; 321():126689. PubMed ID: 32259732 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]