BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

558 related articles for article (PubMed ID: 21410190)

  • 1. Enhanced photoluminescence and field-emission behavior of vertically well aligned arrays of In-doped ZnO Nanowires.
    Ahmad M; Sun H; Zhu J
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1299-305. PubMed ID: 21410190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Well-aligned ZnO nanowires with excellent field emission and photocatalytic properties.
    Chu FH; Huang CW; Hsin CL; Wang CW; Yu SY; Yeh PH; Wu WW
    Nanoscale; 2012 Mar; 4(5):1471-5. PubMed ID: 21979153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of highly uniform Mn/Co-codoped ZnO nanowires: optical, electrical, and magnetic properties.
    Li H; Huang Y; Zhang Q; Qiao Y; Gu Y; Liu J; Zhang Y
    Nanoscale; 2011 Feb; 3(2):654-60. PubMed ID: 21113544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation.
    Bae SY; Na CW; Kang JH; Park J
    J Phys Chem B; 2005 Feb; 109(7):2526-31. PubMed ID: 16851252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient field emission from vertically grown planar ZnO nanowalls on an ITO-glass substrate.
    Pradhan D; Kumar M; Ando Y; Leung KT
    Nanotechnology; 2008 Jan; 19(3):035603. PubMed ID: 21817577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process.
    Zhu H; Iqbal J; Xu H; Yu D
    J Chem Phys; 2008 Sep; 129(12):124713. PubMed ID: 19045054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced photoluminescence and photoconductivity of ZnO nanowires with sputtered Zn.
    Bera A; Ghosh T; Basak D
    ACS Appl Mater Interfaces; 2010 Oct; 2(10):2898-903. PubMed ID: 20919682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced electron field emission properties of high aspect ratio silicon nanowire-zinc oxide core-shell arrays.
    Kale VS; Prabhakar RR; Pramana SS; Rao M; Sow CH; Jinesh KB; Mhaisalkar SG
    Phys Chem Chem Phys; 2012 Apr; 14(13):4614-9. PubMed ID: 22354387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the work function of randomly oriented ZnO nanostructures by capping with faceted Au nanostructure and oxygen defects: enhanced field emission experiments and DFT studies.
    Ghosh A; Guha P; Thapa R; Selvaraj S; Kumar M; Rakshit B; Dash T; Bar R; Ray SK; Satyam PV
    Nanotechnology; 2016 Mar; 27(12):125701. PubMed ID: 26883495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ doping of ZnO nanowires using aerosol-assisted chemical vapour deposition.
    Pung SY; Choy KL; Hou X; Dinsdale K
    Nanotechnology; 2010 Aug; 21(34):345602. PubMed ID: 20671359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis.
    Etacheri V; Roshan R; Kumar V
    ACS Appl Mater Interfaces; 2012 May; 4(5):2717-25. PubMed ID: 22554006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical and field-emission properties of ZnO nanostructures deposited using high-pressure pulsed laser deposition.
    Premkumar T; Zhou YS; Lu YF; Baskar K
    ACS Appl Mater Interfaces; 2010 Oct; 2(10):2863-9. PubMed ID: 20882957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method.
    Qiu J; Li X; He W; Park SJ; Kim HK; Hwang YH; Lee JH; Kim YD
    Nanotechnology; 2009 Apr; 20(15):155603. PubMed ID: 19420551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Templated one step electrodeposition of high aspect ratio n-type ZnO nanowire arrays.
    Sharma SK; Rammohan A; Sharma A
    J Colloid Interface Sci; 2010 Apr; 344(1):1-9. PubMed ID: 20089257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertical p-type Cu-doped ZnO/n-type ZnO homojunction nanowire-based ultraviolet photodetector by the furnace system with hotwire assistance.
    Hsu CL; Gao YD; Chen YS; Hsueh TJ
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4277-85. PubMed ID: 24581048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-period superlattice structure of Sn-doped In(2)O(3)(ZnO)(4) and In(2)O(3)(ZnO)(5) nanowires.
    Na CW; Bae SY; Park J
    J Phys Chem B; 2005 Jul; 109(26):12785-90. PubMed ID: 16852585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertically well aligned P-doped ZnO nanowires synthesized on ZnO-Ga/glass templates.
    Hsu CL; Chang SJ; Lin YR; Tsai SY; Chen IC
    Chem Commun (Camb); 2005 Jul; (28):3571-3. PubMed ID: 16010327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and optical properties of S-doped ZnO nanostructures: nanonails and nanowires.
    Shen G; Cho JH; Yoo JK; Yi GC; Lee CJ
    J Phys Chem B; 2005 Mar; 109(12):5491-6. PubMed ID: 16851588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable synthesis and photoluminescence properties of ZnO nanorod and nanopin arrays.
    Yin S; Chen Y; Su Y; Jia C; Zhou Q; Li S; Xin M; Kong W; Zhang X; Lü Y
    J Nanosci Nanotechnol; 2008 Feb; 8(2):993-6. PubMed ID: 18464439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural, optical, and improved field-emission properties of tetrapod-shaped Sn-doped ZnO nanostructures synthesized via thermal evaporation.
    Zhou X; Lin T; Liu Y; Wu C; Zeng X; Jiang D; Zhang YA; Guo T
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10067-73. PubMed ID: 24063313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.