BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21410194)

  • 1. pH Dependence of the size and crystallographic orientation of the gold nanoparticles prepared by seed-mediated growth.
    Rahman MR; Saleh FS; Okajima T; Ohsaka T
    Langmuir; 2011 Apr; 27(8):5126-35. PubMed ID: 21410194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Au(111) nanoparticle-like electrode through a seed-mediated growth.
    Rahman MR; Okajima T; Ohsaka T
    Chem Commun (Camb); 2010 Jul; 46(28):5172-4. PubMed ID: 20544095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-situ incorporation of gold nanoparticles of desired sizes into three-dimensional macroporous matrixes.
    Ding S; Qian W; Tan Y; Wang Y
    Langmuir; 2006 Aug; 22(17):7105-8. PubMed ID: 16893196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of size and protein environment on electrochemical properties of gold nanoparticles on carbon electrodes.
    Abdullin TI; Bondar OV; Nikitina II; Bulatov ER; Morozov MV; Hilmutdinov AKh; Salakhov MKh; Culha M
    Bioelectrochemistry; 2009 Nov; 77(1):37-42. PubMed ID: 19574110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine.
    Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y
    Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of size and shape of Au nanoparticles using amino-X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers.
    Goy-López S; Taboada P; Cambón A; Juárez J; Alvarez-Lorenzo C; Concheiro A; Mosquera V
    J Phys Chem B; 2010 Jan; 114(1):66-76. PubMed ID: 19968275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-controlled reversible assembly of peptide-functionalized gold nanoparticles.
    Si S; Mandal TK
    Langmuir; 2007 Jan; 23(1):190-5. PubMed ID: 17190503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of methodology based on the formation process of gold nanoshells for detecting hydrogen peroxide scavenging activity.
    Li H; Ma X; Dong J; Qian W
    Anal Chem; 2009 Nov; 81(21):8916-22. PubMed ID: 19824625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel cobalt hexacyanoferrate nanocomposite on CNT scaffold by seed medium and application for biosensor.
    Wang S; Lu L; Yang M; Lei Y; Shen G; Yu R
    Anal Chim Acta; 2009 Oct; 651(2):220-6. PubMed ID: 19782815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction between casein micelles and gold nanoparticles.
    Liu Y; Guo R
    J Colloid Interface Sci; 2009 Apr; 332(1):265-9. PubMed ID: 19131073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential-controlled electrochemical seed-mediated growth of gold nanorods directly on electrode surfaces.
    Abdelmoti LG; Zamborini FP
    Langmuir; 2010 Aug; 26(16):13511-21. PubMed ID: 20695598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of different shape Au nanoparticles through an interfacial redox process using a conducting polymer.
    Mukherjee P; Nandi AK
    Langmuir; 2010 Feb; 26(4):2785-90. PubMed ID: 19891467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from hydrogen peroxide-hydroxide and hydrogen peroxide-bicarbonate in presence of cobalt(II).
    Li J; Li Q; Lu C; Zhao L; Lin JM
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):700-5. PubMed ID: 21186138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of stabilizer-free gold nanoparticles by pulse sonoelectrochemical method.
    Shen Q; Min Q; Shi J; Jiang L; Hou W; Zhu JJ
    Ultrason Sonochem; 2011 Jan; 18(1):231-7. PubMed ID: 20579926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large payloads of gold nanoparticles into the polyamine network core of stimuli-responsive PEGylated nanogels for selective and noninvasive cancer photothermal therapy.
    Nakamura T; Tamura A; Murotani H; Oishi M; Jinji Y; Matsuishi K; Nagasaki Y
    Nanoscale; 2010 May; 2(5):739-46. PubMed ID: 20648319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size sorting of citrate reduced gold nanoparticles by sedimentation field-flow fractionation.
    Contado C; Argazzi R
    J Chromatogr A; 2009 Dec; 1216(52):9088-98. PubMed ID: 19717161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-step biofriendly synthesis of surface modifiable, near-spherical gold nanoparticles for applications in biological detection and catalysis.
    Badwaik VD; Bartonojo JJ; Evans JW; Sahi SV; Willis CB; Dakshinamurthy R
    Langmuir; 2011 May; 27(9):5549-54. PubMed ID: 21480600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of the transition point between quasi-spherical and cubic nanoparticles in a two-step seed-mediated growth method.
    Dovgolevsky E; Haick H
    Small; 2008 Nov; 4(11):2059-66. PubMed ID: 18932188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application.
    Ma Y; Di J; Yan X; Zhao M; Lu Z; Tu Y
    Biosens Bioelectron; 2009 Jan; 24(5):1480-3. PubMed ID: 19038539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of surface oxidation on the interaction of 1-methylaminopyrene with gold nanoparticles.
    Zhang J; Riabinina D; Chaker M; Ma D
    Langmuir; 2012 Feb; 28(5):2858-65. PubMed ID: 22214268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.