These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21410194)

  • 41. New preparation method of gold nanoparticles on SiO2.
    Zanella R; Sandoval A; Santiago P; Basiuk VA; Saniger JM
    J Phys Chem B; 2006 May; 110(17):8559-65. PubMed ID: 16640406
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Precise seed-mediated growth and size-controlled synthesis of palladium nanoparticles using a green chemistry approach.
    Liu J; He F; Gunn TM; Zhao D; Roberts CB
    Langmuir; 2009 Jun; 25(12):7116-28. PubMed ID: 19309120
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of concentration of methanol for the control of particle size and size-dependent SERS studies.
    Praharaj S; Jana S; Kundu S; Pande S; Pal T
    J Colloid Interface Sci; 2009 May; 333(2):699-706. PubMed ID: 19232637
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Application of gold nanoparticles in separation sciences.
    Sýkora D; Kasicka V; Miksík I; Rezanka P; Záruba K; Matejka P; Král V
    J Sep Sci; 2010 Feb; 33(3):372-87. PubMed ID: 20099261
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Growth-sensitive gold nanoshells precursor nanocomposites for the detection of L-DOPA and tyrosinase activity.
    Kong F; Liu H; Dong J; Qian W
    Biosens Bioelectron; 2011 Jan; 26(5):1902-7. PubMed ID: 20400287
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hyper-Rayleigh scattering from gold nanoparticles: effect of size and shape.
    Das K; Uppal A; Saini RK; Varshney GK; Mondal P; Gupta PK
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():398-402. PubMed ID: 24682054
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In situ chemical reductive growth of platinum nanoparticles on glass slide for the mass fabrication of biosensors.
    Yang MH; Qu FL; Lu YS; Shen GL; Yu RQ
    Talanta; 2008 Jan; 74(4):831-5. PubMed ID: 18371716
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Use of the interparticle i-motif for the controlled assembly of gold nanoparticles.
    Wang W; Liu H; Liu D; Xu Y; Yang Y; Zhou D
    Langmuir; 2007 Nov; 23(24):11956-9. PubMed ID: 17949023
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation of a composite film electrochemically deposited with chitosan and gold nanoparticles for the determination of alpha-1-fetoprotein.
    Liu Y; Yuan R; Chai Y; Hong C; Guan S
    Bioprocess Biosyst Eng; 2010 Jun; 33(5):613-8. PubMed ID: 19859743
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reversible self-assembly of carboxylated peptide-functionalized gold nanoparticles driven by metal-ion coordination.
    Si S; Raula M; Paira TK; Mandal TK
    Chemphyschem; 2008 Aug; 9(11):1578-84. PubMed ID: 18615416
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging.
    Kim D; Park S; Lee JH; Jeong YY; Jon S
    J Am Chem Soc; 2007 Jun; 129(24):7661-5. PubMed ID: 17530850
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly sensitive determination of hydroxylamine using fused gold nanoparticles immobilized on sol-gel film modified gold electrode.
    Kannan P; John SA
    Anal Chim Acta; 2010 Mar; 663(2):158-64. PubMed ID: 20206005
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nucleotide-mediated size fractionation of gold nanoparticles in aqueous solutions.
    Zhao W; Lin L; Hsing IM
    Langmuir; 2010 May; 26(10):7405-9. PubMed ID: 20180584
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Seed-mediated co-reduction: a versatile route to architecturally controlled bimetallic nanostructures.
    DeSantis CJ; Sue AC; Bower MM; Skrabalak SE
    ACS Nano; 2012 Mar; 6(3):2617-28. PubMed ID: 22369230
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids.
    Dubey SP; Lahtinen M; Särkkä H; Sillanpää M
    Colloids Surf B Biointerfaces; 2010 Oct; 80(1):26-33. PubMed ID: 20620889
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Real-time monitoring of copolymer stabilized growing gold nanoparticles.
    Polte J; Emmerling F; Radtke M; Reinholz U; Riesemeier H; Thünemann AF
    Langmuir; 2010 Apr; 26(8):5889-94. PubMed ID: 20085232
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface.
    Du D; Chen S; Song D; Li H; Chen X
    Biosens Bioelectron; 2008 Nov; 24(3):475-9. PubMed ID: 18640026
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Growth-sensitive 3D ordered gold nanoshells precursor composite arrays as SERS nanoprobes for assessing hydrogen peroxide scavenging activity.
    Rao Y; Chen Q; Dong J; Qian W
    Analyst; 2011 Feb; 136(4):769-74. PubMed ID: 21152631
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aggregation of polymer-grafted nanoparticles in good solvents: a hierarchical modeling method.
    Cheng L; Cao D
    J Chem Phys; 2011 Sep; 135(12):124703. PubMed ID: 21974548
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparation of gold patterns on polyimide coating via layer-by-layer deposition of gold nanoparticles.
    Basarir F; Yoon TH
    J Colloid Interface Sci; 2010 Dec; 352(1):11-8. PubMed ID: 20817193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.