These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21410239)

  • 1. Multiphase adhesive coacervates inspired by the Sandcastle worm.
    Kaur S; Weerasekare GM; Stewart RJ
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):941-4. PubMed ID: 21410239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex coacervates of oppositely charged co-polypeptides inspired by the sandcastle worm glue.
    Zhang L; Lipik V; Miserez A
    J Mater Chem B; 2016 Feb; 4(8):1544-1556. PubMed ID: 32263121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower Critical Solution Temperature-Driven Self-Coacervation of Nonionic Polyester Underwater Adhesives.
    Narayanan A; Menefee JR; Liu Q; Dhinojwala A; Joy A
    ACS Nano; 2020 Jul; 14(7):8359-8367. PubMed ID: 32538616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex coacervates as a foundation for synthetic underwater adhesives.
    Stewart RJ; Wang CS; Shao H
    Adv Colloid Interface Sci; 2011 Sep; 167(1-2):85-93. PubMed ID: 21081223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coacervate-Based Instant and Repeatable Underwater Adhesive with Anticancer and Antibacterial Properties.
    Peng Q; Wu Q; Chen J; Wang T; Wu M; Yang D; Peng X; Liu J; Zhang H; Zeng H
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):48239-48251. PubMed ID: 34601867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coassembly of Short Peptide and Polyoxometalate into Complex Coacervate Adapted for pH and Metal Ion-Triggered Underwater Adhesion.
    Li X; Zheng T; Liu X; Du Z; Xie X; Li B; Wu L; Li W
    Langmuir; 2019 Apr; 35(14):4995-5003. PubMed ID: 30892902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoresponsive Complex Coacervate-Based Underwater Adhesive.
    Dompé M; Cedano-Serrano FJ; Heckert O; van den Heuvel N; van der Gucht J; Tran Y; Hourdet D; Creton C; Kamperman M
    Adv Mater; 2019 May; 31(21):e1808179. PubMed ID: 30924992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the Impacts of Molecular and Macromolecular Crowding Agents on Protein-Polymer Complex Coacervates.
    Biswas S; Hecht AL; Noble SA; Huang Q; Gillilan RE; Xu AY
    Biomacromolecules; 2023 Nov; 24(11):4771-4782. PubMed ID: 37815312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Robust Salty Water Adhesive by Counterion Exchange Induced Coacervate.
    Zhu X; Wei C; Zhang F; Tang Q; Zhao Q
    Macromol Rapid Commun; 2019 Apr; 40(7):e1800758. PubMed ID: 30672629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-based underwater adhesives and the prospects for their biotechnological production.
    Stewart RJ
    Appl Microbiol Biotechnol; 2011 Jan; 89(1):27-33. PubMed ID: 20890598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex coacervation of Mg(ii) phospho-polymethacrylate, a synthetic analog of sandcastle worm adhesive phosphoproteins.
    Song IT; Stewart RJ
    Soft Matter; 2018 Jan; 14(3):379-386. PubMed ID: 29147716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A water-borne adhesive modeled after the sandcastle glue of P. californica.
    Shao H; Bachus KN; Stewart RJ
    Macromol Biosci; 2009 May; 9(5):464-71. PubMed ID: 19040222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bioinspired elastin-based protein for a cytocompatible underwater adhesive.
    Brennan MJ; Kilbride BF; Wilker JJ; Liu JC
    Biomaterials; 2017 Apr; 124():116-125. PubMed ID: 28192773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Complex Coacervation Design from Macromolecular Assemblies and Emerging Applications.
    Zhou L; Shi H; Li Z; He C
    Macromol Rapid Commun; 2020 Nov; 41(21):e2000149. PubMed ID: 32431012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscosity and interfacial properties in a mussel-inspired adhesive coacervate.
    Hwang DS; Zeng H; Srivastava A; Krogstad DV; Tirrell M; Israelachvili JN; Waite JH
    Soft Matter; 2010 Jul; 6(14):3232-3236. PubMed ID: 21544267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sticky Science: Using Complex Coacervate Adhesives for Biomedical Applications.
    Kwant AN; Es Sayed JS; Kamperman M; Burgess JK; Slebos DJ; Pouwels SD
    Adv Healthc Mater; 2024 Oct; ():e2402340. PubMed ID: 39352099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospinnable, Neutral Coacervates for Facile Preparation of Solid Phenolic Bioadhesives.
    Kim JS; Hwang H; Lee D; Lee H
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):37989-37996. PubMed ID: 34346669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of UDMA's potential as a substitute for Bis-GMA in orthodontic adhesives.
    Papakonstantinou AE; Eliades T; Cellesi F; Watts DC; Silikas N
    Dent Mater; 2013 Aug; 29(8):898-905. PubMed ID: 23787036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong and bioactive bioinspired biomaterials, next generation of bone adhesives.
    Shokri M; Dalili F; Kharaziha M; Baghaban Eslaminejad M; Ahmadi Tafti H
    Adv Colloid Interface Sci; 2022 Jul; 305():102706. PubMed ID: 35623113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supertough polylactide materials prepared through in situ reactive blending with PEG-based diacrylate monomer.
    Fang H; Jiang F; Wu Q; Ding Y; Wang Z
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13552-63. PubMed ID: 25105468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.