These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21410510)

  • 1. Microaerophilic, Fe(II)-dependent growth and Fe(II) oxidation by a Dechlorospirillum species.
    Picardal FW; Zaybak Z; Chakraborty A; Schieber J; Szewzyk U
    FEMS Microbiol Lett; 2011 Jun; 319(1):51-7. PubMed ID: 21410510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria.
    Muehe EM; Gerhardt S; Schink B; Kappler A
    FEMS Microbiol Ecol; 2009 Dec; 70(3):335-43. PubMed ID: 19732145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic redox cycling of iron by freshwater sediment microorganisms.
    Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE
    Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic biooxidation of Fe(II) by Dechlorosoma suillum.
    Lack JG; Chaudhuri SK; Chakraborty R; Achenbach LA; Coates JD
    Microb Ecol; 2002 May; 43(4):424-31. PubMed ID: 11953812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial sulfide oxidation in the oxic-anoxic transition zone of freshwater sediment: involvement of lithoautotrophic Magnetospirillum strain J10.
    Geelhoed JS; Sorokin DY; Epping E; Tourova TP; Banciu HL; Muyzer G; Stams AJ; van Loosdrecht MC
    FEMS Microbiol Ecol; 2009 Oct; 70(1):54-65. PubMed ID: 19659746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Single Bacterium Capable of Oxidation and Reduction of Iron at Circumneutral pH.
    Kato S; Ohkuma M
    Microbiol Spectr; 2021 Sep; 9(1):e0016121. PubMed ID: 34431720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutrophilic, nitrate-dependent, Fe(II) oxidation by a Dechloromonas species.
    Chakraborty A; Picardal F
    World J Microbiol Biotechnol; 2013 Apr; 29(4):617-23. PubMed ID: 23184578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation.
    Senko JM; Dewers TA; Krumholz LR
    Appl Environ Microbiol; 2005 Nov; 71(11):7172-7. PubMed ID: 16269756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeated anaerobic microbial redox cycling of iron.
    Coby AJ; Picardal F; Shelobolina E; Xu H; Roden EE
    Appl Environ Microbiol; 2011 Sep; 77(17):6036-42. PubMed ID: 21742920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils.
    Krepski ST; Emerson D; Hredzak-Showalter PL; Luther GW; Chan CS
    Geobiology; 2013 Sep; 11(5):457-71. PubMed ID: 23790206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria.
    Lueder U; Druschel G; Emerson D; Kappler A; Schmidt C
    FEMS Microbiol Ecol; 2018 Feb; 94(2):. PubMed ID: 29228192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe.
    Lin B; Hyacinthe C; Bonneville S; Braster M; Van Cappellen P; Röling WF
    Environ Microbiol; 2007 Aug; 9(8):1956-68. PubMed ID: 17635542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for rapid microscale bacterial redox cycling of iron in circumneutral environments.
    Sobolev D; Roden EE
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):587-97. PubMed ID: 12448754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002.
    Weber KA; Pollock J; Cole KA; O'Connor SM; Achenbach LA; Coates JD
    Appl Environ Microbiol; 2006 Jan; 72(1):686-94. PubMed ID: 16391108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen.
    Lüdecke C; Reiche M; Eusterhues K; Nietzsche S; Küsel K
    Environ Microbiol; 2010 Oct; 12(10):2814-25. PubMed ID: 20545739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS.
    Nordhoff M; Tominski C; Halama M; Byrne JM; Obst M; Kleindienst S; Behrens S; Kappler A
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogeochemistry and microbiology of microaerobic Fe(II) oxidation.
    Emerson D
    Biochem Soc Trans; 2012 Dec; 40(6):1211-6. PubMed ID: 23176456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential.
    Wildung RE; Li SW; Murray CJ; Krupka KM; Xie Y; Hess NJ; Roden EE
    FEMS Microbiol Ecol; 2004 Jul; 49(1):151-62. PubMed ID: 19712393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and Population Dynamics of the Anaerobic Fe(II)-Oxidizing and Nitrate-Reducing Enrichment Culture KS.
    Tominski C; Heyer H; Lösekann-Behrens T; Behrens S; Kappler A
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29500257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.