BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 21410690)

  • 21. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.
    Chichger H; Cleasby ME; Srai SK; Unwin RJ; Debnam ES; Marks J
    Exp Physiol; 2016 Jun; 101(6):731-42. PubMed ID: 27164183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potent Sodium/Glucose Cotransporter SGLT1/2 Dual Inhibition Improves Glycemic Control Without Marked Gastrointestinal Adaptation or Colonic Microbiota Changes in Rodents.
    Du F; Hinke SA; Cavanaugh C; Polidori D; Wallace N; Kirchner T; Jennis M; Lang W; Kuo GH; Gaul MD; Lenhard J; Demarest K; Ajami NJ; Liang Y; Hornby PJ
    J Pharmacol Exp Ther; 2018 Jun; 365(3):676-687. PubMed ID: 29674332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antidiabetic effects of SGLT2-selective inhibitor ipragliflozin in streptozotocin-nicotinamide-induced mildly diabetic mice.
    Tahara A; Kurosaki E; Yokono M; Yamajuku D; Kihara R; Hayashizaki Y; Takasu T; Imamura M; Qun L; Tomiyama H; Kobayashi Y; Noda A; Sasamata M; Shibasaki M
    J Pharmacol Sci; 2012; 120(1):36-44. PubMed ID: 22971845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovery of potent, low-absorbable sodium-dependent glucose cotransporter 1 (SGLT1) inhibitor SGL5213 for type 2 diabetes treatment.
    Kuroda S; Kobashi Y; Oi T; Kawabe K; Shiozawa F; Okumura-Kitajima L; Sugisaki-Kitano M; Io F; Yamamoto K; Kakinuma H
    Bioorg Med Chem; 2019 Jan; 27(2):394-409. PubMed ID: 30579799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of the urinary glucose excretion contributions of SGLT2 and SGLT1: A quantitative systems pharmacology analysis in healthy individuals and patients with type 2 diabetes treated with SGLT2 inhibitors.
    Yakovleva T; Sokolov V; Chu L; Tang W; Greasley PJ; Peilot Sjögren H; Johansson S; Peskov K; Helmlinger G; Boulton DW; Penland RC
    Diabetes Obes Metab; 2019 Dec; 21(12):2684-2693. PubMed ID: 31423699
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism-Based Pharmacokinetic-Pharmacodynamic Modeling of Luseogliflozin, a Sodium Glucose Co-transporter 2 Inhibitor, in Japanese Patients with Type 2 Diabetes Mellitus.
    Samukawa Y; Mutoh M; Chen S; Mizui N
    Biol Pharm Bull; 2017; 40(8):1207-1218. PubMed ID: 28769002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. T-1095, a renal Na+-glucose transporter inhibitor, improves hyperglycemia in streptozotocin-induced diabetic rats.
    Adachi T; Yasuda K; Okamoto Y; Shihara N; Oku A; Ueta K; Kitamura K; Saito A; Iwakura I; Yamada Y; Yano H; Seino Y; Tsuda K
    Metabolism; 2000 Aug; 49(8):990-5. PubMed ID: 10954015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Role of the kidneys in glucose homeostasis. Implication of sodium-glucose cotransporter 2 (SGLT2) in diabetes mellitus treatment].
    Girard J
    Nephrol Ther; 2017 Apr; 13 Suppl 1():S35-S41. PubMed ID: 28577741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus.
    Vallon V; Rose M; Gerasimova M; Satriano J; Platt KA; Koepsell H; Cunard R; Sharma K; Thomson SC; Rieg T
    Am J Physiol Renal Physiol; 2013 Jan; 304(2):F156-67. PubMed ID: 23152292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Swertisin, a novel SGLT2 inhibitor, with improved glucose homeostasis for effective diabetes therapy.
    Bhardwaj G; Vakani M; Srivastava A; Patel D; Pappachan A; Murumkar P; Shah H; Shah R; Gupta S
    Arch Biochem Biophys; 2021 Oct; 710():108995. PubMed ID: 34289381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of the combination of SGLT2 selective inhibitor ipragliflozin and various antidiabetic drugs in type 2 diabetic mice.
    Tahara A; Takasu T; Yokono M; Imamura M; Kurosaki E
    Arch Pharm Res; 2016 Feb; 39(2):259-270. PubMed ID: 26450351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia.
    Rieg T; Masuda T; Gerasimova M; Mayoux E; Platt K; Powell DR; Thomson SC; Koepsell H; Vallon V
    Am J Physiol Renal Physiol; 2014 Jan; 306(2):F188-93. PubMed ID: 24226519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects.
    Tahara A; Takasu T; Yokono M; Imamura M; Kurosaki E
    J Pharmacol Sci; 2016 Mar; 130(3):159-69. PubMed ID: 26970780
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TAK-875, an orally available G protein-coupled receptor 40/free fatty acid receptor 1 agonist, enhances glucose-dependent insulin secretion and improves both postprandial and fasting hyperglycemia in type 2 diabetic rats.
    Tsujihata Y; Ito R; Suzuki M; Harada A; Negoro N; Yasuma T; Momose Y; Takeuchi K
    J Pharmacol Exp Ther; 2011 Oct; 339(1):228-37. PubMed ID: 21752941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of SGLT2 inhibition in human kidney proximal tubular cells--renoprotection in diabetic nephropathy?
    Panchapakesan U; Pegg K; Gross S; Komala MG; Mudaliar H; Forbes J; Pollock C; Mather A
    PLoS One; 2013; 8(2):e54442. PubMed ID: 23390498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria.
    Chino Y; Samukawa Y; Sakai S; Nakai Y; Yamaguchi J; Nakanishi T; Tamai I
    Biopharm Drug Dispos; 2014 Oct; 35(7):391-404. PubMed ID: 25044127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Empagliflozin ameliorates symptoms of diabetes and renal tubular dysfunction in a rat model of diabetes with enlarged kidney (DEK).
    Domon A; Katayama K; Sato T; Tochigi Y; Tazaki H; Suzuki H
    PLoS One; 2021; 16(5):e0251135. PubMed ID: 33945582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats.
    Han S; Hagan DL; Taylor JR; Xin L; Meng W; Biller SA; Wetterau JR; Washburn WN; Whaley JM
    Diabetes; 2008 Jun; 57(6):1723-9. PubMed ID: 18356408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of LX4211 on glucose homeostasis and body composition in preclinical models.
    Powell DR; DaCosta CM; Smith M; Doree D; Harris A; Buhring L; Heydorn W; Nouraldeen A; Xiong W; Yalamanchili P; Mseeh F; Wilson A; Shadoan M; Zambrowicz B; Ding ZM
    J Pharmacol Exp Ther; 2014 Aug; 350(2):232-42. PubMed ID: 24849925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes.
    Meng W; Ellsworth BA; Nirschl AA; McCann PJ; Patel M; Girotra RN; Wu G; Sher PM; Morrison EP; Biller SA; Zahler R; Deshpande PP; Pullockaran A; Hagan DL; Morgan N; Taylor JR; Obermeier MT; Humphreys WG; Khanna A; Discenza L; Robertson JG; Wang A; Han S; Wetterau JR; Janovitz EB; Flint OP; Whaley JM; Washburn WN
    J Med Chem; 2008 Mar; 51(5):1145-9. PubMed ID: 18260618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.