These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 21411326)

  • 41. Polymorphic structures of Alzheimer's β-amyloid globulomers.
    Yu X; Zheng J
    PLoS One; 2011; 6(6):e20575. PubMed ID: 21687730
    [TBL] [Abstract][Full Text] [Related]  

  • 42.
    Jean L; Brimijoin S; Vaux DJ
    J Biol Chem; 2019 Apr; 294(16):6253-6272. PubMed ID: 30787102
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Destabilization of the Alzheimer's amyloid-β peptide by a proline-rich β-sheet breaker peptide: a molecular dynamics simulation study.
    Kanchi PK; Dasmahapatra AK
    J Mol Model; 2021 Nov; 27(12):356. PubMed ID: 34796404
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computational Evaluation of Interaction Between Curcumin Derivatives and Amyloid-β Monomers and Fibrils: Relevance to Alzheimer's Disease.
    Orjuela A; Lakey-Beitia J; Mojica-Flores R; Hegde ML; Lans I; Alí-Torres J; Rao KS
    J Alzheimers Dis; 2021; 82(s1):S321-S333. PubMed ID: 33337368
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural origin of polymorphism of Alzheimer's amyloid β-fibrils.
    Agopian A; Guo Z
    Biochem J; 2012 Oct; 447(1):43-50. PubMed ID: 22823461
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Internalisation and toxicity of amyloid-β 1-42 are influenced by its conformation and assembly state rather than size.
    Vadukul DM; Maina M; Franklin H; Nardecchia A; Serpell LC; Marshall KE
    FEBS Lett; 2020 Nov; 594(21):3490-3503. PubMed ID: 32871611
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Different effects of Alzheimer's peptide Aβ(1-40) oligomers and fibrils on supported lipid membranes.
    Canale C; Seghezza S; Vilasi S; Carrotta R; Bulone D; Diaspro A; San Biagio PL; Dante S
    Biophys Chem; 2013 Dec; 182():23-9. PubMed ID: 23998637
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simulations on the dual effects of flavonoids as suppressors of Aβ42 fibrillogenesis and destabilizers of mature fibrils.
    Gargari SA; Barzegar A
    Sci Rep; 2020 Oct; 10(1):16636. PubMed ID: 33024142
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure of amyloid oligomers and their mechanisms of toxicities: Targeting amyloid oligomers using novel therapeutic approaches.
    Salahuddin P; Fatima MT; Abdelhameed AS; Nusrat S; Khan RH
    Eur J Med Chem; 2016 May; 114():41-58. PubMed ID: 26974374
    [TBL] [Abstract][Full Text] [Related]  

  • 51. From monomer to fibril: Abeta-amyloid binding to Aducanumab antibody studied by molecular dynamics simulation.
    Frost CV; Zacharias M
    Proteins; 2020 Dec; 88(12):1592-1606. PubMed ID: 32666627
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of phenolic OH groups of flavonoid compounds with H-bond formation ability to suppress amyloid mature fibrils by destabilizing β-sheet conformation of monomeric Aβ17-42.
    Andarzi Gargari S; Barzegar A; Tarinejad A
    PLoS One; 2018; 13(6):e0199541. PubMed ID: 29953467
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stabilization of neurotoxic Alzheimer amyloid-beta oligomers by protein engineering.
    Sandberg A; Luheshi LM; Söllvander S; Pereira de Barros T; Macao B; Knowles TP; Biverstål H; Lendel C; Ekholm-Petterson F; Dubnovitsky A; Lannfelt L; Dobson CM; Härd T
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15595-600. PubMed ID: 20713699
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A molecular model of Alzheimer amyloid beta-peptide fibril formation.
    Tjernberg LO; Callaway DJ; Tjernberg A; Hahne S; Lilliehöök C; Terenius L; Thyberg J; Nordstedt C
    J Biol Chem; 1999 Apr; 274(18):12619-25. PubMed ID: 10212241
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Heterologous amyloid seeding: revisiting the role of acetylcholinesterase in Alzheimer's disease.
    Jean L; Thomas B; Tahiri-Alaoui A; Shaw M; Vaux DJ
    PLoS One; 2007 Jul; 2(7):e652. PubMed ID: 17653279
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protofibril-Fibril Interactions Inhibit Amyloid Fibril Assembly by Obstructing Secondary Nucleation.
    Hasecke F; Niyangoda C; Borjas G; Pan J; Matthews G; Muschol M; Hoyer W
    Angew Chem Int Ed Engl; 2021 Feb; 60(6):3016-3021. PubMed ID: 33095508
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aβ
    Anand BG; Prajapati KP; Kar K
    Biochem Biophys Res Commun; 2018 Jun; 501(1):158-164. PubMed ID: 29723530
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dihydrochalcone molecules destabilize Alzheimer's amyloid-β protofibrils through binding to the protofibril cavity.
    Jin Y; Sun Y; Lei J; Wei G
    Phys Chem Chem Phys; 2018 Jun; 20(25):17208-17217. PubMed ID: 29900443
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amyloid-beta protofibrils differ from amyloid-beta aggregates induced in dilute hexafluoroisopropanol in stability and morphology.
    Nichols MR; Moss MA; Reed DK; Cratic-McDaniel S; Hoh JH; Rosenberry TL
    J Biol Chem; 2005 Jan; 280(4):2471-80. PubMed ID: 15528204
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanoscale Hyperspectral Imaging of Amyloid Secondary Structures in Liquid.
    Lipiec E; Kaderli J; Kobierski J; Riek R; Skirlińska-Nosek K; Sofińska K; Szymoński M; Zenobi R
    Angew Chem Int Ed Engl; 2021 Feb; 60(9):4545-4550. PubMed ID: 32964527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.