These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21411523)

  • 1. The capsid-binding nucleolar helicase DDX56 is important for infectivity of West Nile virus.
    Xu Z; Anderson R; Hobman TC
    J Virol; 2011 Jun; 85(11):5571-80. PubMed ID: 21411523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nucleolar helicase DDX56 redistributes to West Nile virus assembly sites.
    Reid CR; Hobman TC
    Virology; 2017 Jan; 500():169-177. PubMed ID: 27821284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The helicase activity of DDX56 is required for its role in assembly of infectious West Nile virus particles.
    Xu Z; Hobman TC
    Virology; 2012 Nov; 433(1):226-35. PubMed ID: 22925334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DDX56 Binds to Chikungunya Virus RNA To Control Infection.
    Taschuk F; Tapescu I; Moy RH; Cherry S
    mBio; 2020 Oct; 11(5):. PubMed ID: 33109765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between the West Nile virus capsid protein and the host cell-encoded phosphatase inhibitor, I2PP2A.
    Hunt TA; Urbanowski MD; Kakani K; Law LM; Brinton MA; Hobman TC
    Cell Microbiol; 2007 Nov; 9(11):2756-66. PubMed ID: 17868381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The West Nile virus capsid protein blocks apoptosis through a phosphatidylinositol 3-kinase-dependent mechanism.
    Urbanowski MD; Hobman TC
    J Virol; 2013 Jan; 87(2):872-81. PubMed ID: 23115297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Context-Dependent Cleavage of the Capsid Protein by the West Nile Virus Protease Modulates the Efficiency of Virus Assembly.
    VanBlargan LA; Davis KA; Dowd KA; Akey DL; Smith JL; Pierson TC
    J Virol; 2015 Aug; 89(16):8632-42. PubMed ID: 26063422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. West Nile virus capsid protein interaction with importin and HDM2 protein is regulated by protein kinase C-mediated phosphorylation.
    Bhuvanakantham R; Cheong YK; Ng ML
    Microbes Infect; 2010 Aug; 12(8-9):615-25. PubMed ID: 20417716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Jab1 mediates cytoplasmic localization and degradation of West Nile virus capsid protein.
    Oh W; Yang MR; Lee EW; Park KM; Pyo S; Yang JS; Lee HW; Song J
    J Biol Chem; 2006 Oct; 281(40):30166-74. PubMed ID: 16882664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. West Nile virus and dengue virus capsid protein negates the antiviral activity of human Sec3 protein through the proteasome pathway.
    Bhuvanakantham R; Ng ML
    Cell Microbiol; 2013 Oct; 15(10):1688-706. PubMed ID: 23522008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. West Nile Virus Capsid Protein Interacts With Biologically Relevant Host Lipid Systems.
    Martins AS; Carvalho FA; Faustino AF; Martins IC; Santos NC
    Front Cell Infect Microbiol; 2019; 9():8. PubMed ID: 30788291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of antiviral roles for the exon-junction complex and nonsense-mediated decay in flaviviral infection.
    Li M; Johnson JR; Truong B; Kim G; Weinbren N; Dittmar M; Shah PS; Von Dollen J; Newton BW; Jang GM; Krogan NJ; Cherry S; Ramage H
    Nat Microbiol; 2019 Jun; 4(6):985-995. PubMed ID: 30833725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DDX56 antagonizes IFN-β production to enhance EMCV replication by inhibiting IRF3 nuclear translocation.
    Xu S; Xie J; Zhang X; Chen L; Bi Y; Li X; Idris A; Feng R
    Vet Microbiol; 2022 Jan; 264():109304. PubMed ID: 34922148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. West Nile virus-induced neuroinflammation: glial infection and capsid protein-mediated neurovirulence.
    van Marle G; Antony J; Ostermann H; Dunham C; Hunt T; Halliday W; Maingat F; Urbanowski MD; Hobman T; Peeling J; Power C
    J Virol; 2007 Oct; 81(20):10933-49. PubMed ID: 17670819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. West Nile Virus NS1 Antagonizes Interferon Beta Production by Targeting RIG-I and MDA5.
    Zhang HL; Ye HQ; Liu SQ; Deng CL; Li XD; Shi PY; Zhang B
    J Virol; 2017 Sep; 91(18):. PubMed ID: 28659477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DDX56 cooperates with FMDV 3A to enhance FMDV replication by inhibiting the phosphorylation of IRF3.
    Fu SZ; Yang WP; Ru Y; Zhang KS; Wang Y; Liu XT; Li D; Zheng HX
    Cell Signal; 2019 Dec; 64():109393. PubMed ID: 31445188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dephosphorylation of West Nile virus capsid protein enhances the processes of nucleocapsid assembly.
    Cheong YK; Ng ML
    Microbes Infect; 2011 Jan; 13(1):76-84. PubMed ID: 21034847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of multiple RIG-I-specific pathogen associated molecular patterns within the West Nile virus genome and antigenome.
    Shipley JG; Vandergaast R; Deng L; Mariuzza RA; Fredericksen BL
    Virology; 2012 Oct; 432(1):232-8. PubMed ID: 22776165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hsp70 functions as a negative regulator of West Nile virus capsid protein through direct interaction.
    Oh WK; Song J
    Biochem Biophys Res Commun; 2006 Sep; 347(4):994-1000. PubMed ID: 16854374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oncogenic splicing abnormalities induced by DEAD-Box Helicase 56 amplification in colorectal cancer.
    Kouyama Y; Masuda T; Fujii A; Ogawa Y; Sato K; Tobo T; Wakiyama H; Yoshikawa Y; Noda M; Tsuruda Y; Kuroda Y; Eguchi H; Ishida F; Kudo SE; Mimori K
    Cancer Sci; 2019 Oct; 110(10):3132-3144. PubMed ID: 31390121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.