BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21411523)

  • 1. The capsid-binding nucleolar helicase DDX56 is important for infectivity of West Nile virus.
    Xu Z; Anderson R; Hobman TC
    J Virol; 2011 Jun; 85(11):5571-80. PubMed ID: 21411523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nucleolar helicase DDX56 redistributes to West Nile virus assembly sites.
    Reid CR; Hobman TC
    Virology; 2017 Jan; 500():169-177. PubMed ID: 27821284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The helicase activity of DDX56 is required for its role in assembly of infectious West Nile virus particles.
    Xu Z; Hobman TC
    Virology; 2012 Nov; 433(1):226-35. PubMed ID: 22925334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DDX56 Binds to Chikungunya Virus RNA To Control Infection.
    Taschuk F; Tapescu I; Moy RH; Cherry S
    mBio; 2020 Oct; 11(5):. PubMed ID: 33109765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between the West Nile virus capsid protein and the host cell-encoded phosphatase inhibitor, I2PP2A.
    Hunt TA; Urbanowski MD; Kakani K; Law LM; Brinton MA; Hobman TC
    Cell Microbiol; 2007 Nov; 9(11):2756-66. PubMed ID: 17868381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The West Nile virus capsid protein blocks apoptosis through a phosphatidylinositol 3-kinase-dependent mechanism.
    Urbanowski MD; Hobman TC
    J Virol; 2013 Jan; 87(2):872-81. PubMed ID: 23115297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Context-Dependent Cleavage of the Capsid Protein by the West Nile Virus Protease Modulates the Efficiency of Virus Assembly.
    VanBlargan LA; Davis KA; Dowd KA; Akey DL; Smith JL; Pierson TC
    J Virol; 2015 Aug; 89(16):8632-42. PubMed ID: 26063422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. West Nile virus capsid protein interaction with importin and HDM2 protein is regulated by protein kinase C-mediated phosphorylation.
    Bhuvanakantham R; Cheong YK; Ng ML
    Microbes Infect; 2010 Aug; 12(8-9):615-25. PubMed ID: 20417716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Jab1 mediates cytoplasmic localization and degradation of West Nile virus capsid protein.
    Oh W; Yang MR; Lee EW; Park KM; Pyo S; Yang JS; Lee HW; Song J
    J Biol Chem; 2006 Oct; 281(40):30166-74. PubMed ID: 16882664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. West Nile virus and dengue virus capsid protein negates the antiviral activity of human Sec3 protein through the proteasome pathway.
    Bhuvanakantham R; Ng ML
    Cell Microbiol; 2013 Oct; 15(10):1688-706. PubMed ID: 23522008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. West Nile Virus Capsid Protein Interacts With Biologically Relevant Host Lipid Systems.
    Martins AS; Carvalho FA; Faustino AF; Martins IC; Santos NC
    Front Cell Infect Microbiol; 2019; 9():8. PubMed ID: 30788291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of antiviral roles for the exon-junction complex and nonsense-mediated decay in flaviviral infection.
    Li M; Johnson JR; Truong B; Kim G; Weinbren N; Dittmar M; Shah PS; Von Dollen J; Newton BW; Jang GM; Krogan NJ; Cherry S; Ramage H
    Nat Microbiol; 2019 Jun; 4(6):985-995. PubMed ID: 30833725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DDX56 antagonizes IFN-β production to enhance EMCV replication by inhibiting IRF3 nuclear translocation.
    Xu S; Xie J; Zhang X; Chen L; Bi Y; Li X; Idris A; Feng R
    Vet Microbiol; 2022 Jan; 264():109304. PubMed ID: 34922148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. West Nile virus-induced neuroinflammation: glial infection and capsid protein-mediated neurovirulence.
    van Marle G; Antony J; Ostermann H; Dunham C; Hunt T; Halliday W; Maingat F; Urbanowski MD; Hobman T; Peeling J; Power C
    J Virol; 2007 Oct; 81(20):10933-49. PubMed ID: 17670819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. West Nile Virus NS1 Antagonizes Interferon Beta Production by Targeting RIG-I and MDA5.
    Zhang HL; Ye HQ; Liu SQ; Deng CL; Li XD; Shi PY; Zhang B
    J Virol; 2017 Sep; 91(18):. PubMed ID: 28659477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DDX56 cooperates with FMDV 3A to enhance FMDV replication by inhibiting the phosphorylation of IRF3.
    Fu SZ; Yang WP; Ru Y; Zhang KS; Wang Y; Liu XT; Li D; Zheng HX
    Cell Signal; 2019 Dec; 64():109393. PubMed ID: 31445188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dephosphorylation of West Nile virus capsid protein enhances the processes of nucleocapsid assembly.
    Cheong YK; Ng ML
    Microbes Infect; 2011 Jan; 13(1):76-84. PubMed ID: 21034847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of multiple RIG-I-specific pathogen associated molecular patterns within the West Nile virus genome and antigenome.
    Shipley JG; Vandergaast R; Deng L; Mariuzza RA; Fredericksen BL
    Virology; 2012 Oct; 432(1):232-8. PubMed ID: 22776165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hsp70 functions as a negative regulator of West Nile virus capsid protein through direct interaction.
    Oh WK; Song J
    Biochem Biophys Res Commun; 2006 Sep; 347(4):994-1000. PubMed ID: 16854374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oncogenic splicing abnormalities induced by DEAD-Box Helicase 56 amplification in colorectal cancer.
    Kouyama Y; Masuda T; Fujii A; Ogawa Y; Sato K; Tobo T; Wakiyama H; Yoshikawa Y; Noda M; Tsuruda Y; Kuroda Y; Eguchi H; Ishida F; Kudo SE; Mimori K
    Cancer Sci; 2019 Oct; 110(10):3132-3144. PubMed ID: 31390121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.