BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 21411609)

  • 21. Differential effects of dietary selenium (se) and folate on methyl metabolism in liver and colon of rats.
    Uthus EO; Ross SA; Davis CD
    Biol Trace Elem Res; 2006 Mar; 109(3):201-14. PubMed ID: 16632891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. S-adenosylmethionine and its products.
    Grillo MA; Colombatto S
    Amino Acids; 2008 Feb; 34(2):187-93. PubMed ID: 17334902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing S-adenosyl-methionine catabolism extends Drosophila lifespan.
    Obata F; Miura M
    Nat Commun; 2015 Sep; 6():8332. PubMed ID: 26383889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vitamin A and its derivatives induce hepatic glycine N-methyltransferase and hypomethylation of DNA in rats.
    Rowling MJ; McMullen MH; Schalinske KL
    J Nutr; 2002 Mar; 132(3):365-9. PubMed ID: 11880556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glycine N-methyltransferase-/- mice develop chronic hepatitis and glycogen storage disease in the liver.
    Liu SP; Li YS; Chen YJ; Chiang EP; Li AF; Lee YH; Tsai TF; Hsiao M; Huang SF; Chen YM
    Hepatology; 2007 Nov; 46(5):1413-25. PubMed ID: 17937387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine.
    Finkelstein JD
    Clin Chem Lab Med; 2007; 45(12):1694-9. PubMed ID: 17963455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. All-trans-retinoic acid rapidly induces glycine N-methyltransferase in a dose-dependent manner and reduces circulating methionine and homocysteine levels in rats.
    Ozias MK; Schalinske KL
    J Nutr; 2003 Dec; 133(12):4090-4. PubMed ID: 14652353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Okadaic acid-induced, naringin-sensitive phosphorylation of glycine N-methyltransferase in isolated rat hepatocytes.
    Møller MT; Samari HR; Fengsrud M; Strømhaug PE; øStvold AC; Seglen PO
    Biochem J; 2003 Jul; 373(Pt 2):505-13. PubMed ID: 12697024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disrupted liver oxidative metabolism in glycine N-methyltransferase-deficient mice is mitigated by dietary methionine restriction.
    Rome FI; Hughey CC
    Mol Metab; 2022 Apr; 58():101452. PubMed ID: 35121169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lessons Learned from Inherited Metabolic Disorders of Sulfur-Containing Amino Acids Metabolism.
    Kožich V; Stabler S
    J Nutr; 2020 Oct; 150(Suppl 1):2506S-2517S. PubMed ID: 33000152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of dietary methyl group deficiency on one-carbon metabolism in rats.
    Cook RJ; Horne DW; Wagner C
    J Nutr; 1989 Apr; 119(4):612-7. PubMed ID: 2703919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms for auto-inhibition and forced product release in glycine N-methyltransferase: crystal structures of wild-type, mutant R175K and S-adenosylhomocysteine-bound R175K enzymes.
    Huang Y; Komoto J; Konishi K; Takata Y; Ogawa H; Gomi T; Fujioka M; Takusagawa F
    J Mol Biol; 2000 Apr; 298(1):149-62. PubMed ID: 10756111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hepatic transmethylation reactions in micropigs with alcoholic liver disease.
    Villanueva JA; Halsted CH
    Hepatology; 2004 May; 39(5):1303-10. PubMed ID: 15122759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short communication: The effect of increasing concentrations of different methionine forms and 2-hydroxy-4-(methylthio)butanoic acid on genes controlling methionine metabolism in primary bovine neonatal hepatocytes.
    Zhang Q; White HM
    J Dairy Sci; 2019 Jan; 102(1):866-870. PubMed ID: 30391174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New insights into the regulation of methyl group and homocysteine metabolism.
    Williams KT; Schalinske KL
    J Nutr; 2007 Feb; 137(2):311-4. PubMed ID: 17237303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism.
    James SJ; Cutler P; Melnyk S; Jernigan S; Janak L; Gaylor DW; Neubrander JA
    Am J Clin Nutr; 2004 Dec; 80(6):1611-7. PubMed ID: 15585776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Consensus recommendations for the diagnosis, treatment and follow-up of inherited methylation disorders.
    Barić I; Staufner C; Augoustides-Savvopoulou P; Chien YH; Dobbelaere D; Grünert SC; Opladen T; Petković Ramadža D; Rakić B; Wedell A; Blom HJ
    J Inherit Metab Dis; 2017 Jan; 40(1):5-20. PubMed ID: 27671891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methyl balance and transmethylation fluxes in humans.
    Mudd SH; Brosnan JT; Brosnan ME; Jacobs RL; Stabler SP; Allen RH; Vance DE; Wagner C
    Am J Clin Nutr; 2007 Jan; 85(1):19-25. PubMed ID: 17209172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Benzo(a)pyrene induced glycine N-methyltransferase messenger RNA expression in Fundulus heteroclitus embryos.
    Fang X; Dong W; Thornton C; Scheffler B; Willett KL
    Mar Environ Res; 2010; 69 Suppl():S74-6. PubMed ID: 19892394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Restriction of dietary methyl donors limits methionine availability and affects the partitioning of dietary methionine for creatine and phosphatidylcholine synthesis in the neonatal piglet.
    Robinson JL; McBreairty LE; Randell EW; Brunton JA; Bertolo RF
    J Nutr Biochem; 2016 Sep; 35():81-86. PubMed ID: 27469995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.