These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 2141170)
21. Sequences in the 3'-untranslated region of the human cellular glutathione peroxidase gene are necessary and sufficient for selenocysteine incorporation at the UGA codon. Shen Q; Chu FF; Newburger PE J Biol Chem; 1993 May; 268(15):11463-9. PubMed ID: 7684384 [TBL] [Abstract][Full Text] [Related]
22. Solution structure of mRNA hairpins promoting selenocysteine incorporation in Escherichia coli and their base-specific interaction with special elongation factor SELB. Hüttenhofer A; Westhof E; Böck A RNA; 1996 Apr; 2(4):354-66. PubMed ID: 8634916 [TBL] [Abstract][Full Text] [Related]
23. Selenocysteine, a highly specific component of certain enzymes, is incorporated by a UGA-directed co-translational mechanism. Böck A; Stadtman TC Biofactors; 1988 Oct; 1(3):245-50. PubMed ID: 2978458 [TBL] [Abstract][Full Text] [Related]
24. Dynamics and efficiency in vivo of UGA-directed selenocysteine insertion at the ribosome. Suppmann S; Persson BC; Böck A EMBO J; 1999 Apr; 18(8):2284-93. PubMed ID: 10205181 [TBL] [Abstract][Full Text] [Related]
25. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Leinfelder W; Zehelein E; Mandrand-Berthelot MA; Böck A Nature; 1988 Feb; 331(6158):723-5. PubMed ID: 2963963 [TBL] [Abstract][Full Text] [Related]
27. Interaction of translation factor SELB with the formate dehydrogenase H selenopolypeptide mRNA. Baron C; Heider J; Böck A Proc Natl Acad Sci U S A; 1993 May; 90(9):4181-5. PubMed ID: 8483932 [TBL] [Abstract][Full Text] [Related]
28. Polysome distribution of phospholipid hydroperoxide glutathione peroxidase mRNA: evidence for a block in elongation at the UGA/selenocysteine codon. Fletcher JE; Copeland PR; Driscoll DM RNA; 2000 Nov; 6(11):1573-84. PubMed ID: 11105757 [TBL] [Abstract][Full Text] [Related]
29. A bioassay based on recombinant DNA technology for determining selenium concentration. Reches M; Zhao C; Engelberg-Kulka H Appl Environ Microbiol; 1994 Jan; 60(1):45-50. PubMed ID: 7509588 [TBL] [Abstract][Full Text] [Related]
30. Partitioning between recoding and termination at a stop codon-selenocysteine insertion sequence. Kotini SB; Peske F; Rodnina MV Nucleic Acids Res; 2015 Jul; 43(13):6426-38. PubMed ID: 26040702 [TBL] [Abstract][Full Text] [Related]
31. Factors affecting transcriptional regulation of the formate-hydrogen-lyase pathway of Escherichia coli. Birkmann A; Zinoni F; Sawers G; Böck A Arch Microbiol; 1987 Jun; 148(1):44-51. PubMed ID: 2443100 [TBL] [Abstract][Full Text] [Related]
32. Overexpression of wild type and SeCys/Cys mutant of human thioredoxin reductase in E. coli: the role of selenocysteine in the catalytic activity. Bar-Noy S; Gorlatov SN; Stadtman TC Free Radic Biol Med; 2001 Jan; 30(1):51-61. PubMed ID: 11134895 [TBL] [Abstract][Full Text] [Related]
33. Genetic probing of the interaction between the translation factor SelB and its mRNA binding element in Escherichia coli. Kromayer M; Neuhierl B; Friebel A; Böck A Mol Gen Genet; 1999 Dec; 262(4-5):800-6. PubMed ID: 10628863 [TBL] [Abstract][Full Text] [Related]
34. Expression and operon structure of the sel genes of Escherichia coli and identification of a third selenium-containing formate dehydrogenase isoenzyme. Sawers G; Heider J; Zehelein E; Böck A J Bacteriol; 1991 Aug; 173(16):4983-93. PubMed ID: 1650339 [TBL] [Abstract][Full Text] [Related]
35. Cloning of murine SeGpx cDNA and synthesis of mutated GPx proteins in Escherichia coli. Rocher C; Faucheu C; Hervé F; Bénicourt C; Lalanne JL Gene; 1991 Feb; 98(2):193-200. PubMed ID: 1673108 [TBL] [Abstract][Full Text] [Related]
36. Interspecies compatibility of selenoprotein biosynthesis in Enterobacteriaceae. Heider J; Forchhammer K; Sawers G; Böck A Arch Microbiol; 1991; 155(3):221-8. PubMed ID: 1710885 [TBL] [Abstract][Full Text] [Related]
37. A selDABC cluster for selenocysteine incorporation in Eubacterium acidaminophilum. Gursinsky T; Jäger J; Andreesen JR; Söhling B Arch Microbiol; 2000 Sep; 174(3):200-12. PubMed ID: 11041351 [TBL] [Abstract][Full Text] [Related]
38. Factors and selenocysteine insertion sequence requirements for the synthesis of selenoproteins from a gram-positive anaerobe in Escherichia coli. Gursinsky T; Gröbe D; Schierhorn A; Jäger J; Andreesen JR; Söhling B Appl Environ Microbiol; 2008 Mar; 74(5):1385-93. PubMed ID: 18165360 [TBL] [Abstract][Full Text] [Related]
39. Selenoprotein synthesis: an expansion of the genetic code. Böck A; Forchhammer K; Heider J; Baron C Trends Biochem Sci; 1991 Dec; 16(12):463-7. PubMed ID: 1838215 [TBL] [Abstract][Full Text] [Related]
40. Biochemical and genetic analysis of Salmonella typhimurium and Escherichia coli mutants defective in specific incorporation of selenium into formate dehydrogenase and tRNAs. Stadtman TC; Davis JN; Zehelein E; Böck A Biofactors; 1989 Mar; 2(1):35-44. PubMed ID: 2679652 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]