These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 21411900)

  • 1. General DFT++ method implemented with projector augmented waves: electronic structure of SrVO3 and the Mott transition in Ca(2-x)Sr(x)RuO4.
    Karolak M; Wehling TO; Lechermann F; Lichtenstein AI
    J Phys Condens Matter; 2011 Mar; 23(8):085601. PubMed ID: 21411900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-consistent DFT + DMFT scheme in the projector augmented wave method: applications to cerium, Ce2O3 and Pu2O3 with the Hubbard I solver and comparison to DFT + U.
    Amadon B
    J Phys Condens Matter; 2012 Feb; 24(7):075604. PubMed ID: 22301576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab-initio simulations of materials using VASP: Density-functional theory and beyond.
    Hafner J
    J Comput Chem; 2008 Oct; 29(13):2044-78. PubMed ID: 18623101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic reconstruction at an interface between a Mott insulator and a band insulator.
    Okamoto S; Millis AJ
    Nature; 2004 Apr; 428(6983):630-3. PubMed ID: 15071589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method.
    Enkovaara J; Rostgaard C; Mortensen JJ; Chen J; Dułak M; Ferrighi L; Gavnholt J; Glinsvad C; Haikola V; Hansen HA; Kristoffersen HH; Kuisma M; Larsen AH; Lehtovaara L; Ljungberg M; Lopez-Acevedo O; Moses PG; Ojanen J; Olsen T; Petzold V; Romero NA; Stausholm-Møller J; Strange M; Tritsaris GA; Vanin M; Walter M; Hammer B; Häkkinen H; Madsen GK; Nieminen RM; Nørskov JK; Puska M; Rantala TT; Schiøtz J; Thygesen KS; Jacobsen KW
    J Phys Condens Matter; 2010 Jun; 22(25):253202. PubMed ID: 21393795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast multi-orbital equation of motion impurity solver for dynamical mean field theory.
    Feng Q; Oppeneer PM
    J Phys Condens Matter; 2011 Oct; 23(42):425601. PubMed ID: 21970899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A surface-tailored, purely electronic, mott metal-to-insulator transition.
    Moore RG; Zhang J; Nascimento VB; Jin R; Guo J; Wang GT; Fang Z; Mandrus D; Plummer EW
    Science; 2007 Oct; 318(5850):615-9. PubMed ID: 17962556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and electronic properties of Li(2)b(4)O(7).
    Islam MM; Maslyuk VV; Bredow T; Minot C
    J Phys Chem B; 2005 Jul; 109(28):13597-604. PubMed ID: 16852703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bandstructure meets many-body theory: the LDA+DMFT method.
    Held K; Andersen OK; Feldbacher M; Yamasaki A; Yang YF
    J Phys Condens Matter; 2008 Feb; 20(6):064202. PubMed ID: 21693864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A first-order Mott transition in LixCoO2.
    Marianetti CA; Kotliar G; Ceder G
    Nat Mater; 2004 Sep; 3(9):627-31. PubMed ID: 15322532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective band structure of correlated materials: the case of VO(2).
    Tomczak JM; Biermann S
    J Phys Condens Matter; 2007 Sep; 19(36):365206. PubMed ID: 21694152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge self-consistent many-body corrections using optimized projected localized orbitals.
    Schüler M; Peil OE; Kraberger GJ; Pordzik R; Marsman M; Kresse G; Wehling TO; Aichhorn M
    J Phys Condens Matter; 2018 Nov; 30(47):475901. PubMed ID: 30387447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial correlations and the insulating phase of the high-T(c) cuprates: insights from a configuration-interaction-based solver for dynamical mean field theory.
    Go A; Millis AJ
    Phys Rev Lett; 2015 Jan; 114(1):016402. PubMed ID: 25615484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hellmann-Feynman forces within the DFT + U in Wannier functions basis.
    Novoselov D; Korotin DM; Anisimov VI
    J Phys Condens Matter; 2015 Aug; 27(32):325602. PubMed ID: 26214345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid density functional theory band structure engineering in hematite.
    Pozun ZD; Henkelman G
    J Chem Phys; 2011 Jun; 134(22):224706. PubMed ID: 21682532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice Energetics and Correlation-Driven Metal-Insulator Transitions: The Case of Ca_{2}RuO_{4}.
    Han Q; Millis A
    Phys Rev Lett; 2018 Aug; 121(6):067601. PubMed ID: 30141680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronics with Correlated Oxides: SrVO(3)/SrTiO(3) as a Mott Transistor.
    Zhong Z; Wallerberger M; Tomczak JM; Taranto C; Parragh N; Toschi A; Sangiovanni G; Held K
    Phys Rev Lett; 2015 Jun; 114(24):246401. PubMed ID: 26196991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-orbital non-crossing approximation from maximally localized Wannier functions: the Kondo signature of copper phthalocyanine on Ag(100).
    Korytár R; Lorente N
    J Phys Condens Matter; 2011 Sep; 23(35):355009. PubMed ID: 21849718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-hybrid density functional theory for excited electronic states of molecules.
    Grimme S; Neese F
    J Chem Phys; 2007 Oct; 127(15):154116. PubMed ID: 17949141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimensional-crossover-driven metal-insulator transition in SrVO3 ultrathin films.
    Yoshimatsu K; Okabe T; Kumigashira H; Okamoto S; Aizaki S; Fujimori A; Oshima M
    Phys Rev Lett; 2010 Apr; 104(14):147601. PubMed ID: 20481962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.