BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 21411913)

  • 1. Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting.
    Mao A; Park NG; Han GY; Park JH
    Nanotechnology; 2011 Apr; 22(17):175703. PubMed ID: 21411913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoelectrochemical properties of vertically oriented hematite/gold multi-block nanorod arrays and their comparison to pure hematite nanorod arrays.
    Mao A; Kim W; Han GY; Park JH
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1910-3. PubMed ID: 23755618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays.
    Shen S; Guo P; Wheeler DA; Jiang J; Lindley SA; Kronawitter CX; Zhang JZ; Guo L; Mao SS
    Nanoscale; 2013 Oct; 5(20):9867-74. PubMed ID: 23974247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled synthesis of vertically aligned hematite on conducting substrate for photoelectrochemical cells: nanorods versus nanotubes.
    Mao A; Shin K; Kim JK; Wang DH; Han GY; Park JH
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1852-8. PubMed ID: 21557610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting.
    Chernomordik BD; Russell HB; Cvelbar U; Jasinski JB; Kumar V; Deutsch T; Sunkara MK
    Nanotechnology; 2012 May; 23(19):194009. PubMed ID: 22539110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach.
    Sivula K; Zboril R; Le Formal F; Robert R; Weidenkaff A; Tucek J; Frydrych J; Grätzel M
    J Am Chem Soc; 2010 Jun; 132(21):7436-44. PubMed ID: 20443599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertically oriented Ti-Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting.
    Allam NK; Poncheri AJ; El-Sayed MA
    ACS Nano; 2011 Jun; 5(6):5056-66. PubMed ID: 21568298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting.
    Ji M; Cai J; Ma Y; Qi L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3651-60. PubMed ID: 26517010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface passivation of undoped hematite nanorod arrays via aqueous solution growth for improved photoelectrochemical water splitting.
    Shen S; Li M; Guo L; Jiang J; Mao SS
    J Colloid Interface Sci; 2014 Aug; 427():20-4. PubMed ID: 24290228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelectrochemical Properties of Vertically Aligned CuInS2 Nanorod Arrays Prepared via Template-Assisted Growth and Transfer.
    Yang W; Oh Y; Kim J; Kim H; Shin H; Moon J
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):425-31. PubMed ID: 26645722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays.
    Wolcott A; Smith WA; Kuykendall TR; Zhao Y; Zhang JZ
    Small; 2009 Jan; 5(1):104-11. PubMed ID: 19040214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulating Sn self-doping and boosting solar water splitting performance of hematite nanorod arrays grown on fluorine-doped tin oxide via low-level Hf doping.
    Ma H; Chen W; Fan Q; Ye C; Zheng M; Wang J
    J Colloid Interface Sci; 2022 Nov; 625():585-595. PubMed ID: 35751984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal growth of highly oriented single crystalline Ta2O5 nanorod arrays and their conversion to Ta3N5 for efficient solar driven water splitting.
    Su Z; Wang L; Grigorescu S; Lee K; Schmuki P
    Chem Commun (Camb); 2014 Dec; 50(98):15561-4. PubMed ID: 25357012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials.
    Mayer MT; Du C; Wang D
    J Am Chem Soc; 2012 Aug; 134(30):12406-9. PubMed ID: 22800199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrochemical water oxidation by cobalt catalyst ("Co-Pi")/alpha-Fe(2)O(3) composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck.
    Zhong DK; Gamelin DR
    J Am Chem Soc; 2010 Mar; 132(12):4202-7. PubMed ID: 20201513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Fe(2)O(3)/TiO(2) nanorod-nanotube arrays by filling TiO(2) nanotubes with Fe.
    Mohapatra SK; Banerjee S; Misra M
    Nanotechnology; 2008 Aug; 19(31):315601. PubMed ID: 21828788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal Cathodic Photocurrent Generated on an n-Type FeOOH Nanorod-Array Photoelectrode.
    Chen H; Lyu M; Liu G; Wang L
    Chemistry; 2016 Mar; 22(14):4802-8. PubMed ID: 26879339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.