These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 21411913)

  • 21. Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting.
    Zhen C; Wang L; Liu G; Lu GQ; Cheng HM
    Chem Commun (Camb); 2013 Apr; 49(29):3019-21. PubMed ID: 23463440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution.
    Fu Y; Dong CL; Zhou Z; Lee WY; Chen J; Guo P; Zhao L; Shen S
    Phys Chem Chem Phys; 2016 Feb; 18(5):3846-53. PubMed ID: 26763113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of novel AuPd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity.
    Lu Y; Zhang J; Ge L; Han C; Qiu P; Fang S
    J Colloid Interface Sci; 2016 Dec; 483():146-153. PubMed ID: 27552423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced photoelectrochemical performance of bridged ZnO nanorod arrays grown on V-grooved structure.
    Wei Y; Ke L; Leong ES; Liu H; Liew LL; Teng JH; Du H; Sun XW
    Nanotechnology; 2012 Sep; 23(36):365704. PubMed ID: 22910379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte.
    Ruan C; Paulose M; Varghese OK; Mor GK; Grimes CA
    J Phys Chem B; 2005 Aug; 109(33):15754-9. PubMed ID: 16852999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes.
    Zhong DK; Sun J; Inumaru H; Gamelin DR
    J Am Chem Soc; 2009 May; 131(17):6086-7. PubMed ID: 19354283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.
    Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting.
    Lin Y; Xu Y; Mayer MT; Simpson ZI; McMahon G; Zhou S; Wang D
    J Am Chem Soc; 2012 Mar; 134(12):5508-11. PubMed ID: 22397372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A microstructured p-Si photocathode outcompetes Pt as a counter electrode to hematite in photoelectrochemical water splitting.
    Kawde A; Annamalai A; Sellstedt A; Glatzel P; Wågberg T; Messinger J
    Dalton Trans; 2019 Jan; 48(4):1166-1170. PubMed ID: 30534760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.
    Wang J; Feng B; Su J; Guo L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of highly ordered Ta2O5 and Ta3N5 nanorod arrays by nanoimprinting and through-mask anodization.
    Li Y; Nagato K; Delaunay JJ; Kubota J; Domen K
    Nanotechnology; 2014 Jan; 25(1):014013. PubMed ID: 24334655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting.
    Fu L; Yu H; Li Y; Zhang C; Wang X; Shao Z; Yi B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4284-90. PubMed ID: 24451918
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.
    Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pt surface modification of SnO2 nanorod arrays for CO and H2 sensors.
    Huang H; Ong CY; Guo J; White T; Tse MS; Tan OK
    Nanoscale; 2010 Jul; 2(7):1203-7. PubMed ID: 20648350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Template-based preparation of free-standing semiconducting polymeric nanorod arrays on conductive substrates.
    Haberkorn N; Weber SA; Berger R; Theato P
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1573-80. PubMed ID: 20438060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition.
    Klahr BM; Martinson AB; Hamann TW
    Langmuir; 2011 Jan; 27(1):461-8. PubMed ID: 21126056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting.
    Wang W; Dong J; Ye X; Li Y; Ma Y; Qi L
    Small; 2016 Mar; 12(11):1469-78. PubMed ID: 26779803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct growth of tellurium nanorod arrays on Pt/FTO/glass through a surfactant-assisted chemical reduction.
    Liu H; Zeng B; Jia F
    Nanotechnology; 2011 Jul; 22(30):305608. PubMed ID: 21719969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cerium-Doped Iron Oxide Nanorod Arrays for Photoelectrochemical Water Splitting.
    Zhao HP; Zhu ML; Shi HY; Zhou QQ; Chen R; Lin SW; Tong MH; Ji MH; Jiang X; Liao CX; Chen YX; Lu CZ
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pt-functionalized Fe2O3 photoanodes for solar water splitting: the role of hematite nano-organization and the platinum redox state.
    Warwick ME; Barreca D; Bontempi E; Carraro G; Gasparotto A; Maccato C; Kaunisto K; Ruoko TP; Lemmetyinen H; Sada C; Gönüllü Y; Mathur S
    Phys Chem Chem Phys; 2015 May; 17(19):12899-907. PubMed ID: 25909639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.