These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 21411923)

  • 1. Quantitative subsurface contact resonance force microscopy of model polymer nanocomposites.
    Killgore JP; Kelly JY; Stafford CM; Fasolka MJ; Hurley DC
    Nanotechnology; 2011 Apr; 22(17):175706. PubMed ID: 21411923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-force AFM nanomechanics with higher-eigenmode contact resonance spectroscopy.
    Killgore JP; Hurley DC
    Nanotechnology; 2012 Feb; 23(5):055702. PubMed ID: 22236758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale mapping of contact stiffness and damping by contact resonance atomic force microscopy.
    Stan G; King SW; Cook RF
    Nanotechnology; 2012 Jun; 23(21):215703. PubMed ID: 22551825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of Au nanoparticles deeply buried in polymer matrix by various atomic force microscopy techniques.
    Kimura K; Kobayashi K; Matsushige K; Yamada H
    Ultramicroscopy; 2013 Oct; 133():41-9. PubMed ID: 23770541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glass transitions in nanoscale heated volumes of thin polystyrene films.
    Li AG; Burggraf LW
    Rev Sci Instrum; 2010 Dec; 81(12):123707. PubMed ID: 21198032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subsurface imaging of flexible circuits via contact resonance atomic force microscopy.
    Wang W; Ma C; Chen Y; Zheng L; Liu H; Chu J
    Beilstein J Nanotechnol; 2019; 10():1636-1647. PubMed ID: 31467825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoupling subsurface inhomogeneities: a 3D finite element approach for contact nanomechanical measurements.
    Malavé V; Killgore JP; Garboczi EJ
    Nanotechnology; 2019 Jul; 30(28):285703. PubMed ID: 30884477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of atomic force microscopy to the study of natural and model soil particles.
    Cheng S; Bryant R; Doerr SH; Rhodri Williams P; Wright CJ
    J Microsc; 2008 Sep; 231(3):384-94. PubMed ID: 18754993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pull-off force measurements between rough surfaces by atomic force microscopy.
    Beach ER; Tormoen GW; Drelich J; Han R
    J Colloid Interface Sci; 2002 Mar; 247(1):84-99. PubMed ID: 16290443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, surface excess and effective interactions in polymer nanocomposite melts and concentrated solutions.
    Hooper JB; Schweizer KS; Desai TG; Koshy R; Keblinski P
    J Chem Phys; 2004 Oct; 121(14):6986-97. PubMed ID: 15473760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of occlusal contact size on interfacial stresses and failure of a bonded ceramic: FEA and monotonic loading analyses.
    Yi YJ; Kelly JR
    Dent Mater; 2008 Mar; 24(3):403-9. PubMed ID: 17698187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subsurface imaging of rigid particles buried in a polymer matrix based on atomic force microscopy mechanical sensing.
    Zhang W; Chen Y; Hou Y; Wang W; Liu H; Zheng L
    Ultramicroscopy; 2019 Dec; 207():112832. PubMed ID: 31473533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of buried reference structures by use of atomic force acoustic microscopy.
    Striegler A; Koehler B; Bendjus B; Roellig M; Kopycinska-Mueller M; Meyendorf N
    Ultramicroscopy; 2011 Jul; 111(8):1405-16. PubMed ID: 21864784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of subsurface nanoparticles in a polymer matrix using resonance tracking atomic force acoustic microscopy and contact resonance spectroscopy.
    Kimura K; Kobayashi K; Yao A; Yamada H
    Nanotechnology; 2016 Oct; 27(41):415707. PubMed ID: 27607548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of triacetylcellulose-SiO2 nanocomposites by surface modification of silica nanoparticles.
    Kim YJ; Ha SW; Jeon SM; Yoo DW; Chun SH; Sohn BH; Lee JK
    Langmuir; 2010 May; 26(10):7555-60. PubMed ID: 20158173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale mechanics by tomographic contact resonance atomic force microscopy.
    Stan G; Solares SD; Pittenger B; Erina N; Su C
    Nanoscale; 2014 Jan; 6(2):962-9. PubMed ID: 24287978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subsurface atomic force microscopy: towards a quantitative understanding.
    Verbiest GJ; Simon JN; Oosterkamp TH; Rost MJ
    Nanotechnology; 2012 Apr; 23(14):145704. PubMed ID: 22434065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy.
    Yao A; Kobayashi K; Nosaka S; Kimura K; Yamada H
    Sci Rep; 2017 Feb; 7():42718. PubMed ID: 28210001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depth-sensitive subsurface imaging of polymer nanocomposites using second harmonic Kelvin probe force microscopy.
    Castañeda-Uribe OA; Reifenberger R; Raman A; Avila A
    ACS Nano; 2015 Mar; 9(3):2938-47. PubMed ID: 25591106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.