These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 21412053)
21. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Milan G; Romanello V; Pescatore F; Armani A; Paik JH; Frasson L; Seydel A; Zhao J; Abraham R; Goldberg AL; Blaauw B; DePinho RA; Sandri M Nat Commun; 2015 Apr; 6():6670. PubMed ID: 25858807 [TBL] [Abstract][Full Text] [Related]
22. Role of the ubiquitin-proteasome pathway in muscle atrophy in cachexia. Attaix D; Combaret L; Béchet D; Taillandier D Curr Opin Support Palliat Care; 2008 Dec; 2(4):262-6. PubMed ID: 19069311 [TBL] [Abstract][Full Text] [Related]
23. The autophagic-lysosomal and ubiquitin proteasome systems are simultaneously activated in the skeletal muscle of gastric cancer patients with cachexia. Zhang Y; Wang J; Wang X; Gao T; Tian H; Zhou D; Zhang L; Li G; Wang X Am J Clin Nutr; 2020 Mar; 111(3):570-579. PubMed ID: 31968072 [TBL] [Abstract][Full Text] [Related]
24. Muscle atrophy in response to cytotoxic chemotherapy is dependent on intact glucocorticoid signaling in skeletal muscle. Braun TP; Szumowski M; Levasseur PR; Grossberg AJ; Zhu X; Agarwal A; Marks DL PLoS One; 2014; 9(9):e106489. PubMed ID: 25254959 [TBL] [Abstract][Full Text] [Related]
25. Aerobic exercise training as therapy for cardiac and cancer cachexia. Alves CR; da Cunha TF; da Paixão NA; Brum PC Life Sci; 2015 Mar; 125():9-14. PubMed ID: 25500304 [TBL] [Abstract][Full Text] [Related]
26. Autophagic degradation contributes to muscle wasting in cancer cachexia. Penna F; Costamagna D; Pin F; Camperi A; Fanzani A; Chiarpotto EM; Cavallini G; Bonelli G; Baccino FM; Costelli P Am J Pathol; 2013 Apr; 182(4):1367-78. PubMed ID: 23395093 [TBL] [Abstract][Full Text] [Related]
27. IRAK-1-mediated negative regulation of Toll-like receptor signaling through proteasome-dependent downregulation of TRAF6. Muroi M; Tanamoto K Biochim Biophys Acta; 2012 Feb; 1823(2):255-63. PubMed ID: 22033459 [TBL] [Abstract][Full Text] [Related]
28. Deubiquitinases in skeletal muscle atrophy. Wing SS Int J Biochem Cell Biol; 2013 Oct; 45(10):2130-5. PubMed ID: 23680672 [TBL] [Abstract][Full Text] [Related]
29. Long-noncoding RNA Atrolnc-1 promotes muscle wasting in mice with chronic kidney disease. Sun L; Si M; Liu X; Choi JM; Wang Y; Thomas SS; Peng H; Hu Z J Cachexia Sarcopenia Muscle; 2018 Oct; 9(5):962-974. PubMed ID: 30043444 [TBL] [Abstract][Full Text] [Related]
30. TNF-α and cancer cachexia: Molecular insights and clinical implications. Patel HJ; Patel BM Life Sci; 2017 Feb; 170():56-63. PubMed ID: 27919820 [TBL] [Abstract][Full Text] [Related]
31. Histone deacetylase 6 is a FoxO transcription factor-dependent effector in skeletal muscle atrophy. Ratti F; Ramond F; Moncollin V; Simonet T; Milan G; Méjat A; Thomas JL; Streichenberger N; Gilquin B; Matthias P; Khochbin S; Sandri M; Schaeffer L J Biol Chem; 2015 Feb; 290(7):4215-24. PubMed ID: 25516595 [TBL] [Abstract][Full Text] [Related]
33. Posttranslational modifications control FoxO3 activity during denervation. Bertaggia E; Coletto L; Sandri M Am J Physiol Cell Physiol; 2012 Feb; 302(3):C587-96. PubMed ID: 22094330 [TBL] [Abstract][Full Text] [Related]
34. FoxO3 controls autophagy in skeletal muscle in vivo. Mammucari C; Milan G; Romanello V; Masiero E; Rudolf R; Del Piccolo P; Burden SJ; Di Lisi R; Sandri C; Zhao J; Goldberg AL; Schiaffino S; Sandri M Cell Metab; 2007 Dec; 6(6):458-71. PubMed ID: 18054315 [TBL] [Abstract][Full Text] [Related]
35. The ubiquitin-proteasome system and skeletal muscle wasting. Attaix D; Ventadour S; Codran A; Béchet D; Taillandier D; Combaret L Essays Biochem; 2005; 41():173-86. PubMed ID: 16250905 [TBL] [Abstract][Full Text] [Related]
36. Muscle wasting in patients with end-stage renal disease or early-stage lung cancer: common mechanisms at work. Aniort J; Stella A; Philipponnet C; Poyet A; Polge C; Claustre A; Combaret L; Béchet D; Attaix D; Boisgard S; Filaire M; Rosset E; Burlet-Schiltz O; Heng AE; Taillandier D J Cachexia Sarcopenia Muscle; 2019 Apr; 10(2):323-337. PubMed ID: 30697967 [TBL] [Abstract][Full Text] [Related]
37. Reduction of skeletal muscle atrophy by a proteasome inhibitor in a rat model of denervation. Beehler BC; Sleph PG; Benmassaoud L; Grover GJ Exp Biol Med (Maywood); 2006 Mar; 231(3):335-41. PubMed ID: 16514182 [TBL] [Abstract][Full Text] [Related]
38. The ubiquitin-proteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders. Kitajima Y; Yoshioka K; Suzuki N J Physiol Sci; 2020 Sep; 70(1):40. PubMed ID: 32938372 [TBL] [Abstract][Full Text] [Related]
39. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. Doyle A; Zhang G; Abdel Fattah EA; Eissa NT; Li YP FASEB J; 2011 Jan; 25(1):99-110. PubMed ID: 20826541 [TBL] [Abstract][Full Text] [Related]