BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 21412242)

  • 1. Blood pressure and renal hemodynamic effects of angiotensin fragments.
    Yang R; Smolders I; Dupont AG
    Hypertens Res; 2011 Jun; 34(6):674-83. PubMed ID: 21412242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain and peripheral angiotensin II type 1 receptors mediate renal vasoconstrictor and blood pressure responses to angiotensin IV in the rat.
    Yang R; Smolders I; De Bundel D; Fouyn R; Halberg M; Demaegdt H; Vanderheyden P; Dupont AG
    J Hypertens; 2008 May; 26(5):998-1007. PubMed ID: 18398343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressor and renal hemodynamic effects of the novel angiotensin A peptide are angiotensin II type 1A receptor dependent.
    Yang R; Smolders I; Vanderheyden P; Demaegdt H; Van Eeckhaut A; Vauquelin G; Lukaszuk A; Tourwé D; Chai SY; Albiston AL; Nahmias C; Walther T; Dupont AG
    Hypertension; 2011 May; 57(5):956-64. PubMed ID: 21464395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose-dependent systemic and renal haemodynamic effects of angiotensin II in conscious lambs: role of angiotensin AT1 and AT2 receptors.
    Chappellaz ML; Smith FG
    Exp Physiol; 2005 Nov; 90(6):837-45. PubMed ID: 16091404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tonic suppression of spontaneous baroreceptor reflex by endogenous angiotensins via AT(2) subtype receptors at nucleus reticularis ventrolateralis in the rat.
    Lin K; Chan SH; Chan JY
    Synapse; 2001 Apr; 40(1):85-94. PubMed ID: 11170225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal mechanisms of angiotensin II-induced hypertension.
    Granger JP; Schnackenberg CG
    Semin Nephrol; 2000 Sep; 20(5):417-25. PubMed ID: 11022893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal vasoconstrictor and pressor responses to angiotensin IV in mice are AT1a-receptor mediated.
    Yang R; Walther T; Gembardt F; Smolders I; Vanderheyden P; Albiston AL; Chai SY; Dupont AG
    J Hypertens; 2010 Mar; 28(3):487-94. PubMed ID: 19907343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressor and renal effects of intracerebroventricularly administered angiotensins II and III in rats.
    Chen CY; Huang WC
    Kidney Blood Press Res; 2000; 23(2):95-105. PubMed ID: 10765111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal hemodynamic and tubular effects of angiotensins II and III.
    Huang WC
    Chin J Physiol; 1991; 34(1):121-38. PubMed ID: 1874031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escape from the sodium-retaining action of intrarenal angiotensins II and III in the conscious dog.
    Dickstein GM; Woodson JF; Lamb NE; Rose CE; Peach MJ; Carey RM
    Endocrinology; 1985 Nov; 117(5):2160-9. PubMed ID: 4042980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversal by angiotensins II and III of the effects of converting enzyme inhibition on renal electrolyte excretion in rats.
    Harris PJ; Munro JO
    J Physiol; 1984 Jun; 351():491-500. PubMed ID: 6205144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contractile effects of angiotensin peptides in rat aorta are differentially dependent on tyrosine kinase activity.
    Petrescu G; Costuleanu M; Slatineanu SM; Costuleanu N; Foia L; Costuleanu A
    J Renin Angiotensin Aldosterone Syst; 2001 Sep; 2(3):180-7. PubMed ID: 11881120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of different angiotensins during acute, double blockade of the renin system in conscious dogs.
    Wamberg C; Plovsing RR; Sandgaard NC; Bie P
    Am J Physiol Regul Integr Comp Physiol; 2003 Nov; 285(5):R971-80. PubMed ID: 12869367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central hypertensive actions of angiotensin I, II and III in conscious rats.
    Kondo K; Okuno T; Eguchi T; Yasui T; Nakamura R; Saruta T
    Endocrinol Jpn; 1979 Dec; 26(6):713-7. PubMed ID: 540571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal microvascular actions of angiotensin II fragments.
    van Rodijnen WF; van Lambalgen TA; van Wijhe MH; Tangelder GJ; Ter Wee PM
    Am J Physiol Renal Physiol; 2002 Jul; 283(1):F86-92. PubMed ID: 12060590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects on renal hemodynamics of intra-arterial infusions of angiotensins I and II.
    Rosivall L; Navar LG
    Am J Physiol; 1983 Aug; 245(2):F181-7. PubMed ID: 6881336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal actions of angiotensin-(1-7): in vivo and in vitro studies.
    Handa RK; Ferrario CM; Strandhoy JW
    Am J Physiol; 1996 Jan; 270(1 Pt 2):F141-7. PubMed ID: 8769832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central ventilatory and cardiovascular actions of angiotensin peptides in trout.
    Lancien F; Wong M; Arab AA; Mimassi N; Takei Y; Le Mével JC
    Am J Physiol Regul Integr Comp Physiol; 2012 Aug; 303(3):R311-20. PubMed ID: 22696574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiotensin III and IV activation of the brain AT1 receptor subtype in cardiovascular function.
    Wright JW; Bechtholt AJ; Chambers SL; Harding JW
    Peptides; 1996; 17(8):1365-71. PubMed ID: 8971933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systemic and renal hemodynamic effects of the AT1 receptor antagonist, ZD 7155, and the AT2 receptor antagonist, PD 123319, in conscious lambs.
    Chappellaz ML; Smith FG
    Pflugers Arch; 2007 Jan; 453(4):477-86. PubMed ID: 17051392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.