These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 214124)
1. Magnetic susceptibility of laccases and ceruloplasmin. Petersson L; Angström J; Ehrenberg A Biochim Biophys Acta; 1978 Oct; 526(2):311-7. PubMed ID: 214124 [TBL] [Abstract][Full Text] [Related]
2. Pulsed electron paramagnetic resonance studies of types I and II coper of Rhus vernicifera laccase and porcine ceruloplasmin. Mondoví B; Graziani MT; Mims WB; Oltzik R; Peisach J Biochemistry; 1977 Sep; 16(19):4198-202. PubMed ID: 197989 [TBL] [Abstract][Full Text] [Related]
3. The phenoloxidases of the ascomycete Podospora anserina. XI. The state of copper of laccases I, II and III. Molitoris HP; Reinhammar B Biochim Biophys Acta; 1975 Apr; 386(2):493-502. PubMed ID: 166666 [TBL] [Abstract][Full Text] [Related]
4. The state of copper in stellacyanin and laccase from the lacquer tree Rhus vernicifera. Malmström BG; Reinhammar B; Vänngård T Biochim Biophys Acta; 1970 Apr; 205(1):48-57. PubMed ID: 4314765 [No Abstract] [Full Text] [Related]
5. Magnetic studies of the trinuclear center in laccase and ascorbate oxidase approached by EPR spectroscopy and magnetic susceptibility measurements. Huang HW; Sakurai T; Monjushiro H; Takeda S Biochim Biophys Acta; 1998 Apr; 1384(1):160-70. PubMed ID: 9602107 [TBL] [Abstract][Full Text] [Related]
6. A new copper(II) electron paramagnetic resonance signal in two laccases and in cytochrome c oxidase. Reinhammar B; Malkin R; Jensen P; Karlsson B; Andréasson LE; Aasa R; Vänngård T; Malmström BG J Biol Chem; 1980 Jun; 255(11):5000-3. PubMed ID: 6246091 [TBL] [Abstract][Full Text] [Related]
7. Magnetic susceptibility studies of laccase and oxyhemocyanin. Dooley DM; Scott RA; Ellinghaus J; Solomon EI; Gray HB Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3019-22. PubMed ID: 98765 [TBL] [Abstract][Full Text] [Related]
8. Kinetic studies of Rhus vernicifera laccase. Role of the metal centers in electron transfer. Andréasson LE; Reinhammar B Biochim Biophys Acta; 1976 Oct; 445(3):579-97. PubMed ID: 9990 [TBL] [Abstract][Full Text] [Related]
9. Magnetic susceptibility of lacquer tree laccase. Moss TH; Vänngård T Biochim Biophys Acta; 1974 Nov; 371(1):39-43. PubMed ID: 4371856 [No Abstract] [Full Text] [Related]
10. Coordination environment for the type 3 copper center of tree laccase and CuB of cytochrome c oxidase as determined by electron nuclear double resonance. Cline J; Reinhammar B; Jensen P; Venters R; Hoffman BM J Biol Chem; 1983 Apr; 258(8):5124-8. PubMed ID: 6300117 [TBL] [Abstract][Full Text] [Related]
11. Kinetic studies of Rhus vernicifera laccase. Evidence for multi-electron transfer and an oxygen intermediate in the reoxidation reaction. Andréasson LE; Brändén R; Reinhammar B Biochim Biophys Acta; 1976 Jul; 438(2):370-9. PubMed ID: 182231 [TBL] [Abstract][Full Text] [Related]
12. Stereochemistry of anion complexes of type 2 Cu(II) in Rhus vernicifera laccase. Analogy with superoxide dismutase and Cu(II) carbonic anhydrase. Desideri A; Morpurgo L; Rotilio G; Mondovì B FEBS Lett; 1979 Feb; 98(2):339-41. PubMed ID: 217736 [No Abstract] [Full Text] [Related]
13. Dependence on freezing of the geometry and redox potential of type 1 and type 2 copper sites of Japanese-lacquer-tree (Rhus vernicifera) laccase. Morpurgo L; Calabrese L; Desideri A; Rotilio G Biochem J; 1981 Feb; 193(2):639-42. PubMed ID: 6272712 [TBL] [Abstract][Full Text] [Related]
14. Photoreduction of copper chromophores in blue oxidases. Henry Y; Peisach J J Biol Chem; 1978 Nov; 253(21):7751-6. PubMed ID: 212433 [TBL] [Abstract][Full Text] [Related]
15. Intramolecular electron transfer in laccases. Farver O; Wherland S; Koroleva O; Loginov DS; Pecht I FEBS J; 2011 Sep; 278(18):3463-71. PubMed ID: 21790996 [TBL] [Abstract][Full Text] [Related]
16. Primary structure of a Japanese lacquer tree laccase as a prototype enzyme of multicopper oxidases. Nitta K; Kataoka K; Sakurai T J Inorg Biochem; 2002 Jul; 91(1):125-31. PubMed ID: 12121769 [TBL] [Abstract][Full Text] [Related]
17. Studies on laccases of lacquer trees. II. Copper exchange studies of Rhus vernicifera laccase using radioactive copper. OMURA T J Biochem; 1961 Oct; 50():305-11. PubMed ID: 14482009 [No Abstract] [Full Text] [Related]
18. Yeast copper-thionein can reconstitute the Japanese-lacquer-tree (Rhus vernicifera) laccase from the Type 2-copper-depleted enzyme via a direct copper(I)-transfer mechanism. Morpurgo L; Hartmann HJ; Desideri A; Weser U; Rotilio G Biochem J; 1983 May; 211(2):515-7. PubMed ID: 6307284 [TBL] [Abstract][Full Text] [Related]
19. Oxidation and reduction of copper ions in catalytic reactions of Rhus laccase. Nakamura T Adv Exp Med Biol; 1976; 74():408-23. PubMed ID: 134627 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the anomalous spectroscopic features of the copper sites in chicken ceruloplasmin: comparison to human ceruloplasmin. Machonkin TE; Musci G; Zhang HH; Bonaccorsi di Patti MC; Calabrese L; Hedman B; Hodgson KO; Solomon EI Biochemistry; 1999 Aug; 38(34):11093-102. PubMed ID: 10460165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]