BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 214124)

  • 21. Which copper is paramagnetic in the type 2/type 3 cluster of laccase?
    Fraterrigo TL; Miller C; Reinhammar B; McMillin DR
    J Biol Inorg Chem; 1999 Apr; 4(2):183-7. PubMed ID: 10499090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical properties of japanese-lacquer-tree (Rhus vernicifera) laccase depleted of type 2 copper(II). Involvement of type-2 copper(II) in the 330nm chromophore.
    Morpurgo L; Graziani MT; Finazzi-Agrò A; Rotilio G; Mondovì B
    Biochem J; 1980 May; 187(2):361-6. PubMed ID: 6446906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antisymmetric exchange in triangular tricopper(II) complexes: correlation among structural, magnetic, and electron paramagnetic resonance parameters.
    Ferrer S; Lloret F; Pardo E; Clemente-Juan JM; Liu-González M; García-Granda S
    Inorg Chem; 2012 Jan; 51(2):985-1001. PubMed ID: 22220521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The mechanism of electron transfer in laccase-catalysed reactions.
    Andréasson LE; Reinhammar B
    Biochim Biophys Acta; 1979 May; 568(1):145-56. PubMed ID: 221027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A COMPARISON OF THE ENZYMIC ACTIVITIES OF PIG CERULOPLASMIN AND RHUS VERNICIFERA LACCASE.
    PEISACH J; LEVINE WG
    J Biol Chem; 1965 Jun; 240():2284-9. PubMed ID: 14304827
    [No Abstract]   [Full Text] [Related]  

  • 26. Stability of Japanese-lacquer-tree (Rhus vernicifera) laccase to thermal and chemical denaturation: comparison with ascorbate oxidase.
    Agostinelli E; Cervoni L; Giartosio A; Morpurgo L
    Biochem J; 1995 Mar; 306 ( Pt 3)(Pt 3):697-702. PubMed ID: 7702562
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-temperature resonance-Raman spectra of Japanese-lacquer-tree (Rhus vernicifera) laccase, type-2-copper-depleted laccase and H2O2-treated type-2-copper-depleted laccase.
    Musci G; Desideri A; Morpurgo L; Garnier-Suillerot A; Tosi L
    Biochem J; 1983 Aug; 213(2):503-6. PubMed ID: 6225424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coordination environment and fluoride binding of type 2 copper in the blue copper oxidase ceruloplasmin.
    Dawson JH; Dooley DM; Gray HB
    Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4078-81. PubMed ID: 212731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterogeneity of the Type 3 copper in Japanese-lacquer-tree (Rhus vernicifera) laccase.
    Morpurgo L; Desideri A; Rotilio G
    Biochem J; 1982 Dec; 207(3):625-7. PubMed ID: 6299275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 1-D polymers with alternate Cu2 and Ln2 units (Ln = Gd, Er, Y) and carboxylate linkages.
    Calvo R; Rapp RE; Chagas E; Sartoris RP; Baggio R; Garland MT; Perec M
    Inorg Chem; 2008 Nov; 47(22):10389-97. PubMed ID: 18937450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectroscopic studies of perturbed T1 Cu sites in the multicopper oxidases Saccharomyces cerevisiae Fet3p and Rhus vernicifera laccase: allosteric coupling between the T1 and trinuclear Cu sites.
    Augustine AJ; Kragh ME; Sarangi R; Fujii S; Liboiron BD; Stoj CS; Kosman DJ; Hodgson KO; Hedman B; Solomon EI
    Biochemistry; 2008 Feb; 47(7):2036-45. PubMed ID: 18197705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Titrations with ferrocyanide of japanese-lacquer-tree (Rhus vernicifera) laccase and of the type 2 copper-depleted enzyme. Interrelation of the copper sites.
    Morpurgo L; Graziani MT; Desideri A; Rotilio G
    Biochem J; 1980 May; 187(2):367-70. PubMed ID: 6446907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low temperature magnetic susceptibility of ceruloplasmin.
    Aisen P; Koenig SH; Lilienthal HR
    J Mol Biol; 1967 Sep; 28(2):225-31. PubMed ID: 4293205
    [No Abstract]   [Full Text] [Related]  

  • 34. Spectroscopic and catalytic properties of Rhus vernicifera laccase depleted in type 2 copper.
    Reinhammar B; Oda Y
    J Inorg Biochem; 1979 Oct; 11(2):115-27. PubMed ID: 228004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Room temperature ESR spectra of Rhus vernicifera laccase and derivatives.
    Sakurai T; Takahashi J
    Biochem Biophys Res Commun; 1995 Oct; 215(1):235-40. PubMed ID: 7575597
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binuclear copper clusters as active sites for oxidases.
    Mason HS
    Adv Exp Med Biol; 1976; 74():464-9. PubMed ID: 183478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis, magnetostructural correlation, and catalytic promiscuity of unsymmetric dinuclear copper(II) complexes: models for catechol oxidases and hydrolases.
    Osório RE; Peralta RA; Bortoluzzi AJ; de Almeida VR; Szpoganicz B; Fischer FL; Terenzi H; Mangrich AS; Mantovani KM; Ferreira DE; Rocha WR; Haase W; Tomkowicz Z; dos Anjos A; Neves A
    Inorg Chem; 2012 Feb; 51(3):1569-89. PubMed ID: 22260179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-temperature magnetic circular dichroism studies of native laccase: spectroscopic evidence for exogenous ligand bridging at a trinuclear copper active site.
    Allendorf MD; Spira DJ; Solomon EI
    Proc Natl Acad Sci U S A; 1985 May; 82(10):3063-7. PubMed ID: 2987909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and spectroscopic studies of a model for catechol oxidase.
    Smith SJ; Noble CJ; Palmer RC; Hanson GR; Schenk G; Gahan LR; Riley MJ
    J Biol Inorg Chem; 2008 May; 13(4):499-510. PubMed ID: 18188615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ESR, zero-field splitting, and magnetic exchange of exchange-coupled copper(II)-copper(II) pairs in copper(II) tetraphenylporphyrin N-oxide.
    Yang FA; Guo CW; Chen YJ; Chen JH; Wang SS; Tung JY; Hwang LP; Elango S
    Inorg Chem; 2007 Jan; 46(2):578-85. PubMed ID: 17279838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.