These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 214124)
21. Which copper is paramagnetic in the type 2/type 3 cluster of laccase? Fraterrigo TL; Miller C; Reinhammar B; McMillin DR J Biol Inorg Chem; 1999 Apr; 4(2):183-7. PubMed ID: 10499090 [TBL] [Abstract][Full Text] [Related]
22. Optical properties of japanese-lacquer-tree (Rhus vernicifera) laccase depleted of type 2 copper(II). Involvement of type-2 copper(II) in the 330nm chromophore. Morpurgo L; Graziani MT; Finazzi-Agrò A; Rotilio G; Mondovì B Biochem J; 1980 May; 187(2):361-6. PubMed ID: 6446906 [TBL] [Abstract][Full Text] [Related]
23. Antisymmetric exchange in triangular tricopper(II) complexes: correlation among structural, magnetic, and electron paramagnetic resonance parameters. Ferrer S; Lloret F; Pardo E; Clemente-Juan JM; Liu-González M; García-Granda S Inorg Chem; 2012 Jan; 51(2):985-1001. PubMed ID: 22220521 [TBL] [Abstract][Full Text] [Related]
24. The mechanism of electron transfer in laccase-catalysed reactions. Andréasson LE; Reinhammar B Biochim Biophys Acta; 1979 May; 568(1):145-56. PubMed ID: 221027 [TBL] [Abstract][Full Text] [Related]
25. A COMPARISON OF THE ENZYMIC ACTIVITIES OF PIG CERULOPLASMIN AND RHUS VERNICIFERA LACCASE. PEISACH J; LEVINE WG J Biol Chem; 1965 Jun; 240():2284-9. PubMed ID: 14304827 [No Abstract] [Full Text] [Related]
26. Stability of Japanese-lacquer-tree (Rhus vernicifera) laccase to thermal and chemical denaturation: comparison with ascorbate oxidase. Agostinelli E; Cervoni L; Giartosio A; Morpurgo L Biochem J; 1995 Mar; 306 ( Pt 3)(Pt 3):697-702. PubMed ID: 7702562 [TBL] [Abstract][Full Text] [Related]
28. Coordination environment and fluoride binding of type 2 copper in the blue copper oxidase ceruloplasmin. Dawson JH; Dooley DM; Gray HB Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4078-81. PubMed ID: 212731 [TBL] [Abstract][Full Text] [Related]
29. Heterogeneity of the Type 3 copper in Japanese-lacquer-tree (Rhus vernicifera) laccase. Morpurgo L; Desideri A; Rotilio G Biochem J; 1982 Dec; 207(3):625-7. PubMed ID: 6299275 [TBL] [Abstract][Full Text] [Related]
30. 1-D polymers with alternate Cu2 and Ln2 units (Ln = Gd, Er, Y) and carboxylate linkages. Calvo R; Rapp RE; Chagas E; Sartoris RP; Baggio R; Garland MT; Perec M Inorg Chem; 2008 Nov; 47(22):10389-97. PubMed ID: 18937450 [TBL] [Abstract][Full Text] [Related]
31. Spectroscopic studies of perturbed T1 Cu sites in the multicopper oxidases Saccharomyces cerevisiae Fet3p and Rhus vernicifera laccase: allosteric coupling between the T1 and trinuclear Cu sites. Augustine AJ; Kragh ME; Sarangi R; Fujii S; Liboiron BD; Stoj CS; Kosman DJ; Hodgson KO; Hedman B; Solomon EI Biochemistry; 2008 Feb; 47(7):2036-45. PubMed ID: 18197705 [TBL] [Abstract][Full Text] [Related]
32. Titrations with ferrocyanide of japanese-lacquer-tree (Rhus vernicifera) laccase and of the type 2 copper-depleted enzyme. Interrelation of the copper sites. Morpurgo L; Graziani MT; Desideri A; Rotilio G Biochem J; 1980 May; 187(2):367-70. PubMed ID: 6446907 [TBL] [Abstract][Full Text] [Related]
33. Low temperature magnetic susceptibility of ceruloplasmin. Aisen P; Koenig SH; Lilienthal HR J Mol Biol; 1967 Sep; 28(2):225-31. PubMed ID: 4293205 [No Abstract] [Full Text] [Related]
34. Spectroscopic and catalytic properties of Rhus vernicifera laccase depleted in type 2 copper. Reinhammar B; Oda Y J Inorg Biochem; 1979 Oct; 11(2):115-27. PubMed ID: 228004 [TBL] [Abstract][Full Text] [Related]
35. Room temperature ESR spectra of Rhus vernicifera laccase and derivatives. Sakurai T; Takahashi J Biochem Biophys Res Commun; 1995 Oct; 215(1):235-40. PubMed ID: 7575597 [TBL] [Abstract][Full Text] [Related]
36. Binuclear copper clusters as active sites for oxidases. Mason HS Adv Exp Med Biol; 1976; 74():464-9. PubMed ID: 183478 [TBL] [Abstract][Full Text] [Related]
37. Synthesis, magnetostructural correlation, and catalytic promiscuity of unsymmetric dinuclear copper(II) complexes: models for catechol oxidases and hydrolases. Osório RE; Peralta RA; Bortoluzzi AJ; de Almeida VR; Szpoganicz B; Fischer FL; Terenzi H; Mangrich AS; Mantovani KM; Ferreira DE; Rocha WR; Haase W; Tomkowicz Z; dos Anjos A; Neves A Inorg Chem; 2012 Feb; 51(3):1569-89. PubMed ID: 22260179 [TBL] [Abstract][Full Text] [Related]
38. Low-temperature magnetic circular dichroism studies of native laccase: spectroscopic evidence for exogenous ligand bridging at a trinuclear copper active site. Allendorf MD; Spira DJ; Solomon EI Proc Natl Acad Sci U S A; 1985 May; 82(10):3063-7. PubMed ID: 2987909 [TBL] [Abstract][Full Text] [Related]
39. Structural and spectroscopic studies of a model for catechol oxidase. Smith SJ; Noble CJ; Palmer RC; Hanson GR; Schenk G; Gahan LR; Riley MJ J Biol Inorg Chem; 2008 May; 13(4):499-510. PubMed ID: 18188615 [TBL] [Abstract][Full Text] [Related]
40. ESR, zero-field splitting, and magnetic exchange of exchange-coupled copper(II)-copper(II) pairs in copper(II) tetraphenylporphyrin N-oxide. Yang FA; Guo CW; Chen YJ; Chen JH; Wang SS; Tung JY; Hwang LP; Elango S Inorg Chem; 2007 Jan; 46(2):578-85. PubMed ID: 17279838 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]