These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21412461)

  • 1. Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult.
    Dehaes M; Grant PE; Sliva DD; Roche-Labarbe N; Pienaar R; Boas DA; Franceschini MA; Selb J
    Biomed Opt Express; 2011 Feb; 2(3):552-67. PubMed ID: 21412461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Different Optical Properties of Head Tissues on Near-Infrared Spectroscopy Using Monte Carlo Simulations.
    Russomanno E; Kalyanov A; Jiang J; Ackermann M; Wolf M
    Adv Exp Med Biol; 2022; 1395():39-43. PubMed ID: 36527611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patient-oriented simulation based on Monte Carlo algorithm by using MRI data.
    Chuang CC; Lee YT; Chen CM; Hsieh YS; Liu TC; Sun CW
    Biomed Eng Online; 2012 Apr; 11():21. PubMed ID: 22510474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of oxygen saturation and total hemoglobin estimates in the neonatal brain using the semi-infinite slab model for FD-NIRS data analysis.
    Barker JW; Panigrahy A; Huppert TJ
    Biomed Opt Express; 2014 Dec; 5(12):4300-12. PubMed ID: 25574439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depth sensitivity analysis of functional near-infrared spectroscopy measurement using three-dimensional Monte Carlo modelling-based magnetic resonance imaging.
    Mansouri C; L'huillier JP; Kashou NH; Humeau A
    Lasers Med Sci; 2010 May; 25(3):431-8. PubMed ID: 20143117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the source-detector separation in near infrared spectroscopy for healthy and clinical applications.
    Wang L; Ayaz H; Izzetoglu M
    J Biophotonics; 2019 Nov; 12(11):e201900175. PubMed ID: 31291506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain structure and spatial sensitivity profile assessing by near-infrared spectroscopy modeling based on 3D MRI data.
    Chuang CC; Chen CM; Hsieh YS; Liu TC; Sun CW
    J Biophotonics; 2013 Mar; 6(3):267-74. PubMed ID: 22678984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-slope imaging of cerebral hemodynamics with frequency-domain near-infrared spectroscopy.
    Blaney G; Fernandez C; Sassaroli A; Fantini S
    Neurophotonics; 2023 Jan; 10(1):013508. PubMed ID: 36601543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy.
    Brigadoi S; Cooper RJ
    Neurophotonics; 2015 Apr; 2(2):025005. PubMed ID: 26158009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency-Domain Techniques for Cerebral and Functional Near-Infrared Spectroscopy.
    Fantini S; Sassaroli A
    Front Neurosci; 2020; 14():300. PubMed ID: 32317921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of oversimplifying the head anatomy on cerebral blood flow measurements with diffuse correlation spectroscopy.
    Zhao H; Buckley EM
    Neurophotonics; 2023 Jan; 10(1):015010. PubMed ID: 37006324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms.
    Pogue BW; Paulsen KD; Abele C; Kaufman H
    J Biomed Opt; 2000 Apr; 5(2):185-93. PubMed ID: 10938782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head.
    Selb J; Ogden TM; Dubb J; Fang Q; Boas DA
    J Biomed Opt; 2014 Jan; 19(1):16010. PubMed ID: 24407503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models.
    Fukui Y; Ajichi Y; Okada E
    Appl Opt; 2003 Jun; 42(16):2881-7. PubMed ID: 12790436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalp and skull influence on near infrared photon propagation in the Colin27 brain template.
    Strangman GE; Zhang Q; Li Z
    Neuroimage; 2014 Jan; 85 Pt 1():136-49. PubMed ID: 23660029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-distance diffuse optical spectroscopy with a single optode via hypotrochoidal scanning.
    Applegate MB; Roblyer D
    Opt Lett; 2018 Feb; 43(4):747-750. PubMed ID: 29444068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial neural networks for retrieving absorption and reduced scattering spectra from frequency-domain diffuse reflectance spectroscopy at short source-detector separation.
    Chen YW; Chen CC; Huang PJ; Tseng SH
    Biomed Opt Express; 2016 Apr; 7(4):1496-510. PubMed ID: 27446671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Temporal Confounding Effects of Extra-cerebral Contamination Factors on the Hemodynamic Signal Measured by Functional Near-Infrared Spectroscopy.
    Zarei M; Ansari MA; Zare K
    J Lasers Med Sci; 2019; 10(Suppl 1):S73-S81. PubMed ID: 32021678
    [No Abstract]   [Full Text] [Related]  

  • 19. Quantitative effect of the neonatal fontanel on synthetic near infrared spectroscopy measurements.
    Dehaes M; Kazemi K; Pélégrini-Issac M; Grebe R; Benali H; Wallois F
    Hum Brain Mapp; 2013 Apr; 34(4):878-89. PubMed ID: 22109808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related changes in diffuse optical tomography sensitivity profiles in infancy.
    Fu X; Richards JE
    PLoS One; 2021; 16(6):e0252036. PubMed ID: 34101747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.