These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21412523)

  • 1. Improved lithium cyclability and storage in a multi-sized pore ("differential spacers") mesoporous SnO2.
    Shiva K; Asokan S; Bhattacharyya AJ
    Nanoscale; 2011 Apr; 3(4):1501-3. PubMed ID: 21412523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanosize SnO₂ confined in the porous shells of carbon cages for kinetically efficient and long-term lithium storage.
    Zhou G; Wang DW; Li L; Li N; Li F; Cheng HM
    Nanoscale; 2013 Feb; 5(4):1576-82. PubMed ID: 23329149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembling CoSn3 nanoparticles on multiwalled carbon nanotubes with enhanced lithium storage properties.
    Zhai C; Du N; Zhang H; Yu J; Wu P; Xiao C; Yang D
    Nanoscale; 2011 Apr; 3(4):1798-801. PubMed ID: 21373652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoporous SnO2@carbon core-shell nanostructures with superior electrochemical performance for lithium ion batteries.
    Chen LB; Yin XM; Mei L; Li CC; Lei DN; Zhang M; Li QH; Xu Z; Xu CM; Wang TH
    Nanotechnology; 2012 Jan; 23(3):035402. PubMed ID: 22173372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability.
    Wang Z; Luan D; Boey FY; Lou XW
    J Am Chem Soc; 2011 Apr; 133(13):4738-41. PubMed ID: 21401090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and lithium storage performances of mesoporous Fe₃O₄@C microcapsules.
    Yuan SM; Li JX; Yang LT; Su LW; Liu L; Zhou Z
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):705-9. PubMed ID: 21361300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials.
    Nie A; Gan LY; Cheng Y; Asayesh-Ardakani H; Li Q; Dong C; Tao R; Mashayek F; Wang HT; Schwingenschlögl U; Klie RF; Yassar RS
    ACS Nano; 2013 Jul; 7(7):6203-11. PubMed ID: 23730945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SnO(2) nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage.
    Kim JG; Nam SH; Lee SH; Choi SM; Kim WB
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):828-35. PubMed ID: 21344871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties.
    Ding S; Luan D; Boey FY; Chen JS; Lou XW
    Chem Commun (Camb); 2011 Jul; 47(25):7155-7. PubMed ID: 21607244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon/SnO2/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity.
    Kong J; Liu Z; Yang Z; Tan HR; Xiong S; Wong SY; Li X; Lu X
    Nanoscale; 2012 Jan; 4(2):525-30. PubMed ID: 22127410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of tin oxide/graphene nanosheets into 3D hierarchical frameworks for high-performance lithium storage.
    Huang Y; Wu D; Han S; Li S; Xiao L; Zhang F; Feng X
    ChemSusChem; 2013 Aug; 6(8):1510-5. PubMed ID: 23784753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layered titanium disilicide stabilized by oxide coating for highly reversible lithium insertion and extraction.
    Zhou S; Simpson ZI; Yang X; Wang D
    ACS Nano; 2012 Sep; 6(9):8114-9. PubMed ID: 22917056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesoporous SnO2 synthesized with non-ionic surfactants as an anode material for lithium batteries.
    Subramanian V; Jiang JC; Smith PH; Rambabu B
    J Nanosci Nanotechnol; 2004; 4(1-2):125-31. PubMed ID: 15112554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities.
    Chen JS; Wang Z; Dong XC; Chen P; Lou XW
    Nanoscale; 2011 May; 3(5):2158-61. PubMed ID: 21479308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sonochemical synthesis of ordered SnO₂/CMK-3 nanocomposites and their lithium storage properties.
    Qiao H; Li J; Fu J; Kumar D; Wei Q; Cai Y; Huang F
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3704-8. PubMed ID: 21861510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and mechanism study of mesoporous SnO2/SiO2 composites.
    Zhu J; Tay BY; Ma J
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2046-55. PubMed ID: 17025123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core-shell heterostructures: formation mechanism, and enhanced photocatalytic activity.
    Wu W; Zhang S; Ren F; Xiao X; Zhou J; Jiang C
    Nanoscale; 2011 Nov; 3(11):4676-84. PubMed ID: 21947413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun eggroll-like CaSnO3 nanotubes with high lithium storage performance.
    Li L; Peng S; Cheah YL; Wang J; Teh P; Ko Y; Wong C; Srinivasan M
    Nanoscale; 2013 Jan; 5(1):134-8. PubMed ID: 23147464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries.
    Park J; Kim GP; Nam I; Park S; Yi J
    Nanotechnology; 2013 Jan; 24(2):025602. PubMed ID: 23220858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS₂ nanoplates for high-performance lithium-ion batteries.
    Du Y; Yin Z; Rui X; Zeng Z; Wu XJ; Liu J; Zhu Y; Zhu J; Huang X; Yan Q; Zhang H
    Nanoscale; 2013 Feb; 5(4):1456-9. PubMed ID: 23306599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.