BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 21413140)

  • 1. Wettability of soybean (Glycine max L.) leaves by foliar sprays with respect to developmental changes.
    Puente DW; Baur P
    Pest Manag Sci; 2011 Jul; 67(7):798-806. PubMed ID: 21413140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of physical (roughness) and chemical (dielectric constant) leaf surface properties relevant to wettability and adhesion.
    Nairn JJ; Forster WA; van Leeuwen RM
    Pest Manag Sci; 2011 Dec; 67(12):1562-70. PubMed ID: 21681916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ontogenetic variation in chemical and physical characteristics of adaxial apple leaf surfaces.
    Bringe K; Schumacher CF; Schmitz-Eiberger M; Steiner U; Oerke EC
    Phytochemistry; 2006 Jan; 67(2):161-70. PubMed ID: 16321411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on the changes in wettability of rice (Oryza sativa.) leaf surfaces at different development stages using the OWRK method.
    Zhu YQ; Yu CX; Li Y; Zhu QQ; Zhou L; Cao C; Yu TT; Du FP
    Pest Manag Sci; 2014 Mar; 70(3):462-9. PubMed ID: 23765738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of different spray liquids on the foliar retention of agricultural sprays by wheat plants in a canopy.
    Butler Ellis MC; Webb DA; Western NM
    Pest Manag Sci; 2004 Aug; 60(8):786-94. PubMed ID: 15307670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wettability of pear leaves from three regions characterized at different stages after flowering using the OWRK method.
    Gao Y; Guo R; Fan R; Liu Z; Kong W; Zhang P; Du FP
    Pest Manag Sci; 2018 Aug; 74(8):1804-1809. PubMed ID: 29389059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant-induced enhancement of droplet adhesion in superhydrophobic soybean (
    Hagedorn O; Fleute-Schlachter I; Mainx HG; Zeisler-Diehl V; Koch K
    Beilstein J Nanotechnol; 2017; 8():2345-2356. PubMed ID: 29181291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strelitzia reginae leaf as a natural template for anisotropic wetting and superhydrophobicity.
    Mele E; Girardo S; Pisignano D
    Langmuir; 2012 Mar; 28(11):5312-7. PubMed ID: 22401575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant-Microbe Interactions: Wetting of Ivy (Hedera helix L.) Leaf Surfaces in Relation to Colonization by Epiphytic Microorganisms.
    Knoll D; Schreiber L
    Microb Ecol; 2000 Jul; 40(1):33-42. PubMed ID: 10977875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of solution and leaf surface polarity on droplet spread area and contact angle.
    Nairn JJ; Forster WA; van Leeuwen RM
    Pest Manag Sci; 2016 Mar; 72(3):551-7. PubMed ID: 25864426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of leaf surface and formulation properties in predicting wetting outcomes.
    Nairn JJ; Forster WA
    Pest Manag Sci; 2024 Feb; 80(2):202-211. PubMed ID: 36441162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaporation and wetted area of single droplets on waxy and hairy leaf surfaces.
    Zhu H; Yu Y; Ozkan HE; Derksen RC; Krause CR
    Commun Agric Appl Biol Sci; 2008; 73(4):711-8. PubMed ID: 19226818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wettability of biomimetic thermally grown aluminum oxide coatings.
    Samad JE; Nychka JA
    Bioinspir Biomim; 2011 Mar; 6(1):016004. PubMed ID: 21252413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for evaluating leaf surface free energy and polarity having accounted for surface roughness.
    Nairn JJ; Forster WA
    Pest Manag Sci; 2017 Sep; 73(9):1854-1865. PubMed ID: 28195394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of adjuvant formulation properties in predicting wetting on leaf surfaces.
    Nairn JJ; Forster WA
    Pest Manag Sci; 2024 Feb; 80(2):212-219. PubMed ID: 36495479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance matching of common pesticides in banana plantations on the surface of banana leaves at different growth stages.
    Jiang T; Duan J; Zhang Z; Xie B; Yang Z
    Pest Manag Sci; 2023 Dec; 79(12):5116-5129. PubMed ID: 37565694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf wettability decreases along an extreme altitudinal gradient.
    Aryal B; Neuner G
    Oecologia; 2010 Jan; 162(1):1-9. PubMed ID: 19727830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of surfactants with barley leaf surfaces: time-dependent recovery of contact angles is due to foliar uptake of surfactants.
    Baales J; Zeisler-Diehl VV; Malkowsky Y; Schreiber L
    Planta; 2021 Nov; 255(1):1. PubMed ID: 34837118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diel growth patterns of young soybean (Glycine max) leaflets are synchronous throughout different positions on a plant.
    Friedli M; Walter A
    Plant Cell Environ; 2015 Mar; 38(3):514-24. PubMed ID: 25041284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.