These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 21413140)

  • 21. Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.) indicate phenotypic plasticity.
    Elagöz V; Han SS; Manning WJ
    Environ Pollut; 2006 Apr; 140(3):395-405. PubMed ID: 16202494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Photosynthetic characteristics and photoprotective mechanisms during leaf development of soybean plants grown in the field].
    Jiang CD; Gao HY; Zou Q; Jiang GM
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Aug; 30(4):428-34. PubMed ID: 15627692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The model of rough wetting for hydrophobic steel meshes that mimic Asparagus setaceus leaf.
    Jiang ZX; Geng L; Huang YD; Guan SA; Dong W; Ma ZY
    J Colloid Interface Sci; 2011 Feb; 354(2):866-72. PubMed ID: 21115180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differences in photosynthetic behaviour and leaf senescence of soybean (Glycine max [L.] Merrill) dependent on N2 fixation or nitrate supply.
    Kaschuk G; Hungria M; Leffelaar PA; Giller KE; Kuyper TW
    Plant Biol (Stuttg); 2010 Jan; 12(1):60-9. PubMed ID: 20653888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.
    Bhattarai SP; Midmore DJ
    J Integr Plant Biol; 2009 Jul; 51(7):675-88. PubMed ID: 19566646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Seasonal effects of deficit irrigation on leaf photosynthetic traits of fruiting and non-fruiting shoots in almond trees.
    Nortes PA; Gonzalez-Real MM; Egea G; Baille A
    Tree Physiol; 2009 Mar; 29(3):375-88. PubMed ID: 19203958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A study on the wetting properties of broccoli leaf surfaces and their time dependent self-healing after mechanical damage.
    Rich BB; Pokroy B
    Soft Matter; 2018 Oct; 14(38):7782-7792. PubMed ID: 30079427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wettability of silicone-hydrogel contact lenses in the presence of tear-film components.
    Cheng L; Muller SJ; Radke CJ
    Curr Eye Res; 2004 Feb; 28(2):93-108. PubMed ID: 14972715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elevated atmospheric carbon dioxide effects on soybean and sorghum gas exchange in conventional and no-tillage systems.
    Prior SA; Runion GB; Rogers HH; Arriaga FJ
    J Environ Qual; 2010; 39(2):596-608. PubMed ID: 20176833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of solar radiation on severity of soybean rust.
    Young HM; George S; Narváez DF; Srivastava P; Schuerger AC; Wright DL; Marois JJ
    Phytopathology; 2012 Aug; 102(8):794-803. PubMed ID: 22551225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ozone stress-induced proteomic changes in leaf total soluble and chloroplast proteins of soybean reveal that carbon allocation is involved in adaptation in the early developmental stage.
    Ahsan N; Nanjo Y; Sawada H; Kohno Y; Komatsu S
    Proteomics; 2010 Jul; 10(14):2605-19. PubMed ID: 20443193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method.
    Ensikat HJ; Mayser M; Barthlott W
    Langmuir; 2012 Oct; 28(40):14338-46. PubMed ID: 22978578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of organic solvents with the epicuticular wax layer of wheat leaves.
    Myung K; Parobek AP; Godbey JA; Bowling AJ; Pence HE
    J Agric Food Chem; 2013 Sep; 61(37):8737-42. PubMed ID: 23964787
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leaf surface traits contributing to wettability, water interception and uptake of above-ground water sources in shrubs of Patagonian arid ecosystems.
    Cavallaro A; Carbonell-Silletta L; Burek A; Goldstein G; Scholz FG; Bucci SJ
    Ann Bot; 2022 Sep; 130(3):409-418. PubMed ID: 35325023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seasonal changes in morphology govern wettability of Katsura leaves.
    Kang H; Graybill PM; Fleetwood S; Boreyko JB; Jung S
    PLoS One; 2018; 13(9):e0202900. PubMed ID: 30260963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leaf extracellular ascorbate in relation to O(3) tolerance of two soybean cultivars.
    Cheng FY; Burkey KO; Robinson JM; Booker FL
    Environ Pollut; 2007 Dec; 150(3):355-62. PubMed ID: 17442469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repellency of the lotus leaf: contact angles, drop retention, and sliding angles.
    Extrand CW; Moon SI
    Langmuir; 2014 Jul; 30(29):8791-7. PubMed ID: 25029189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wettability, polarity, and water absorption of holm oak leaves: effect of leaf side and age.
    Fernández V; Sancho-Knapik D; Guzmán P; Peguero-Pina JJ; Gil L; Karabourniotis G; Khayet M; Fasseas C; Heredia-Guerrero JA; Heredia A; Gil-Pelegrín E
    Plant Physiol; 2014 Sep; 166(1):168-80. PubMed ID: 24913938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mimicking the rice leaf--from ordered binary structures to anisotropic wettability.
    Zhu D; Li X; Zhang G; Zhang X; Zhang X; Wang T; Yang B
    Langmuir; 2010 Sep; 26(17):14276-83. PubMed ID: 20677764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic differentiation in cauline-leaf-specific wettability of a rosette-forming perennial Arabidopsis from two contrasting montane habitats.
    Aryal B; Shinohara W; Honjo MN; Kudoh H
    Ann Bot; 2018 Jun; 121(7):1351-1360. PubMed ID: 29579149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.