BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 21413186)

  • 41. Vibrational spectroscopy as a supporting technique in clinical diagnosis and prognosis of atherosclerotic carotid plaques: a review.
    Tosi G; Giorgini E; Rubini C; Sabbatini S; Librando V; Alò F
    Anal Quant Cytopathol Histpathol; 2012 Aug; 34(4):214-32. PubMed ID: 23016468
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An empirical evaluation of three vibrational spectroscopic methods for detection of aflatoxins in maize.
    Lee KM; Davis J; Herrman TJ; Murray SC; Deng Y
    Food Chem; 2015 Apr; 173():629-39. PubMed ID: 25466069
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Raman spectroscopy can differentiate malignant tumors from normal breast tissue and detect early neoplastic changes in a mouse model.
    Kast RE; Serhatkulu GK; Cao A; Pandya AK; Dai H; Thakur JS; Naik VM; Naik R; Klein MD; Auner GW; Rabah R
    Biopolymers; 2008 Mar; 89(3):235-41. PubMed ID: 18041066
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Applications of Vibrational Spectroscopy for Analysis of Connective Tissues.
    Querido W; Kandel S; Pleshko N
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33572384
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Scaled quantum chemical calculations and FTIR, FT-Raman spectral analysis of 2-Methylpyrazine.
    Krishnakumar V; Prabavathi N
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 May; 72(4):743-7. PubMed ID: 19121975
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Parasites under the Spotlight: Applications of Vibrational Spectroscopy to Malaria Research.
    Perez-Guaita D; Marzec KM; Hudson A; Evans C; Chernenko T; Matthäus C; Miljkovic M; Diem M; Heraud P; Richards JS; Andrew D; Anderson DA; Doerig C; Garcia-Bustos J; McNaughton D; Wood BR
    Chem Rev; 2018 Jun; 118(11):5330-5358. PubMed ID: 29676564
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spectral pre and post processing for infrared and Raman spectroscopy of biological tissues and cells.
    Byrne HJ; Knief P; Keating ME; Bonnier F
    Chem Soc Rev; 2016 Apr; 45(7):1865-78. PubMed ID: 26463830
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection.
    Kong K; Kendall C; Stone N; Notingher I
    Adv Drug Deliv Rev; 2015 Jul; 89():121-34. PubMed ID: 25809988
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid, accurate, and comparative differentiation of clinically and industrially relevant microorganisms via multiple vibrational spectroscopic fingerprinting.
    Muhamadali H; Subaihi A; Mohammadtaheri M; Xu Y; Ellis DI; Ramanathan R; Bansal V; Goodacre R
    Analyst; 2016 Aug; 141(17):5127-36. PubMed ID: 27414261
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization and analysis of mycobacteria and Gram-negative bacteria and co-culture mixtures by Raman microspectroscopy, FTIR, and atomic force microscopy.
    Tang M; McEwen GD; Wu Y; Miller CD; Zhou A
    Anal Bioanal Chem; 2013 Feb; 405(5):1577-91. PubMed ID: 23196750
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of ex vivo handling procedures on the near-infrared Raman spectra of normal mammalian tissues.
    Shim MG; Wilson BC
    Photochem Photobiol; 1996 May; 63(5):662-71. PubMed ID: 8628758
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Raman spectroscopy in dental research: a short review of recent studies.
    Tsuda H; Arends J
    Adv Dent Res; 1997 Nov; 11(4):539-47. PubMed ID: 9470515
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vivo detection of dysplastic tissue by Raman spectroscopy.
    Bakker Schut TC; Witjes MJ; Sterenborg HJ; Speelman OC; Roodenburg JL; Marple ET; Bruining HA; Puppels GJ
    Anal Chem; 2000 Dec; 72(24):6010-8. PubMed ID: 11140770
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update.
    Eberhardt K; Stiebing C; Matthäus C; Schmitt M; Popp J
    Expert Rev Mol Diagn; 2015 Jun; 15(6):773-87. PubMed ID: 25872466
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automated cytological detection of Barrett's neoplasia with infrared spectroscopy.
    Old O; Lloyd G; Isabelle M; Almond LM; Kendall C; Baxter K; Shepherd N; Shore A; Stone N; Barr H
    J Gastroenterol; 2018 Feb; 53(2):227-235. PubMed ID: 28501919
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chemometric analysis of integrated FTIR and Raman spectra obtained by non-invasive exfoliative cytology for the screening of oral cancer.
    Ghosh A; Raha S; Dey S; Chatterjee K; Roy Chowdhury A; Barui A
    Analyst; 2019 Feb; 144(4):1309-1325. PubMed ID: 30560265
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Real-time in vivo cancer diagnosis using Raman spectroscopy.
    Wang W; Zhao J; Short M; Zeng H
    J Biophotonics; 2015 Jul; 8(7):527-45. PubMed ID: 25220508
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett's oesophagus.
    Lovat LB; Johnson K; Mackenzie GD; Clark BR; Novelli MR; Davies S; O'Donovan M; Selvasekar C; Thorpe SM; Pickard D; Fitzgerald R; Fearn T; Bigio I; Bown SG
    Gut; 2006 Aug; 55(8):1078-83. PubMed ID: 16469795
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of a high throughput (HT) Raman spectroscopy method for rapid screening of liquid blood plasma from prostate cancer patients.
    Medipally DK; Maguire A; Bryant J; Armstrong J; Dunne M; Finn M; Lyng FM; Meade AD
    Analyst; 2017 Apr; 142(8):1216-1226. PubMed ID: 28001146
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia.
    Mo J; Zheng W; Low JJ; Ng J; Ilancheran A; Huang Z
    Anal Chem; 2009 Nov; 81(21):8908-15. PubMed ID: 19817391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.