These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 21413697)

  • 21. Reversible hydrogels from self-assembling genetically engineered protein block copolymers.
    Xu C; Breedveld V; Kopecek J
    Biomacromolecules; 2005; 6(3):1739-49. PubMed ID: 15877401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and gelation mechanism of silk hydrogels.
    Nagarkar S; Nicolai T; Chassenieux C; Lele A
    Phys Chem Chem Phys; 2010 Apr; 12(15):3834-44. PubMed ID: 20358077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid self-assembly of alpha-synuclein observed by in situ atomic force microscopy.
    Hoyer W; Cherny D; Subramaniam V; Jovin TM
    J Mol Biol; 2004 Jun; 340(1):127-39. PubMed ID: 15184027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new pH and thermo-responsive chiral hydrogel for stimulated release.
    Shankar BV; Patnaik A
    J Phys Chem B; 2007 Aug; 111(31):9294-300. PubMed ID: 17629325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phospholipid interaction induces molecular-level polymorphism in apolipoprotein C-II amyloid fibrils via alternative assembly pathways.
    Griffin MD; Mok ML; Wilson LM; Pham CL; Waddington LJ; Perugini MA; Howlett GJ
    J Mol Biol; 2008 Jan; 375(1):240-56. PubMed ID: 18005990
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fibril formation of hsp10 homologue proteins and determination of fibril core regions: differences in fibril core regions dependent on subtle differences in amino acid sequence.
    Yagi H; Sato A; Yoshida A; Hattori Y; Hara M; Shimamura J; Sakane I; Hongo K; Mizobata T; Kawata Y
    J Mol Biol; 2008 Apr; 377(5):1593-606. PubMed ID: 18329043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and properties of silk hydrogels.
    Kim UJ; Park J; Li C; Jin HJ; Valluzzi R; Kaplan DL
    Biomacromolecules; 2004; 5(3):786-92. PubMed ID: 15132662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons.
    Lara C; Adamcik J; Jordens S; Mezzenga R
    Biomacromolecules; 2011 May; 12(5):1868-75. PubMed ID: 21466236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laminated morphology of nontwisting beta-sheet fibrils constructed via peptide self-assembly.
    Lamm MS; Rajagopal K; Schneider JP; Pochan DJ
    J Am Chem Soc; 2005 Nov; 127(47):16692-700. PubMed ID: 16305260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An additional fluorenylmethoxycarbonyl (Fmoc) moiety in di-Fmoc-functionalized L-lysine induces pH-controlled ambidextrous gelation with significant advantages.
    Reddy SM; Shanmugam G; Duraipandy N; Kiran MS; Mandal AB
    Soft Matter; 2015 Nov; 11(41):8126-40. PubMed ID: 26338226
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro characterization of lactoferrin aggregation and amyloid formation.
    Nilsson MR; Dobson CM
    Biochemistry; 2003 Jan; 42(2):375-82. PubMed ID: 12525164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular basis of the structural stability of a Top7-based scaffold at extreme pH and temperature conditions.
    Soares TA; Boschek CB; Apiyo D; Baird C; Straatsma TP
    J Mol Graph Model; 2010 Jun; 28(8):755-65. PubMed ID: 20185346
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tandem modular protein-based hydrogels constructed using a novel two-component approach.
    Lv S; Cao Y; Li H
    Langmuir; 2012 Jan; 28(4):2269-74. PubMed ID: 22085110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Additional supra-self-assembly of human serum albumin under amyloid-like-forming solution conditions.
    Juárez J; Taboada P; Goy-López S; Cambón A; Madec MB; Yeates SG; Mosquera V
    J Phys Chem B; 2009 Sep; 113(36):12391-9. PubMed ID: 19681594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Folding, self-assembly, and bulk material properties of a de novo designed three-stranded beta-sheet hydrogel.
    Rughani RV; Salick DA; Lamm MS; Yucel T; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 May; 10(5):1295-304. PubMed ID: 19344123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembly of pH and calcium dual-responsive peptide-amphiphilic hydrogel.
    Zhou XR; Ge R; Luo SZ
    J Pept Sci; 2013 Dec; 19(12):737-44. PubMed ID: 24123618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fibril assemblies in aqueous whey protein mixtures.
    Bolder SG; Hendrickx H; Sagis LM; van der Linden E
    J Agric Food Chem; 2006 Jun; 54(12):4229-34. PubMed ID: 16756351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of fibril formation by a 39-residue peptide (PAPf39) from human prostatic acidic phosphatase.
    Ye Z; French KC; Popova LA; Lednev IK; Lopez MM; Makhatadze GI
    Biochemistry; 2009 Dec; 48(48):11582-91. PubMed ID: 19902966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New aspects of the formation of physical hydrogels of chitosan in a hydroalcoholic medium.
    Boucard N; Viton C; Domard A
    Biomacromolecules; 2005; 6(6):3227-37. PubMed ID: 16283750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical dissection and reassembly of amyloid fibrils formed by a peptide fragment of transthyretin.
    MacPhee CE; Dobson CM
    J Mol Biol; 2000 Apr; 297(5):1203-15. PubMed ID: 10764584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.