BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 21413921)

  • 1. Carboxylated lysine is required for higher activities in Hydantoinases.
    Kumar V; Saxena N; Sarma M; Radha Kishan KV
    Protein Pept Lett; 2011 Jul; 18(7):663-9. PubMed ID: 21413921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular structure of D-hydantoinase from Bacillus sp. AR9: evidence for mercury inhibition.
    Radha Kishan KV; Vohra RM; Ganesan K; Agrawal V; Sharma VM; Sharma R
    J Mol Biol; 2005 Mar; 347(1):95-105. PubMed ID: 15733920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of metal binding and posttranslational lysine carboxylation on the activity of recombinant hydantoinase.
    Huang CY; Hsu CC; Chen MC; Yang YS
    J Biol Inorg Chem; 2009 Jan; 14(1):111-21. PubMed ID: 18781344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical rescue of the post-translationally carboxylated lysine mutant of allantoinase and dihydroorotase by metal ions and short-chain carboxylic acids.
    Ho YY; Huang YH; Huang CY
    Amino Acids; 2013 Apr; 44(4):1181-91. PubMed ID: 23287969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray structure of a dihydropyrimidinase from Thermus sp. at 1.3 A resolution.
    Abendroth J; Niefind K; Schomburg D
    J Mol Biol; 2002 Jun; 320(1):143-56. PubMed ID: 12079340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulation of the active site loops of D-hydantoinase, a (beta/alpha)8-barrel protein, for modulation of the substrate specificity.
    Cheon YH; Park HS; Kim JH; Kim Y; Kim HS
    Biochemistry; 2004 Jun; 43(23):7413-20. PubMed ID: 15182184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A thermostable D-hydantoinase isolated from a mesophilic Bacillus sp.AR9.
    Sharma R; Vohra RM
    Biochem Biophys Res Commun; 1997 May; 234(2):485-8. PubMed ID: 9177298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and molecular characterization of a novel D-hydantoinase from Jannaschia sp. CCS1.
    Cai Y; Trodler P; Jiang S; Zhang W; Wu Y; Lu Y; Yang S; Jiang W
    FEBS J; 2009 Jul; 276(13):3575-88. PubMed ID: 19490017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of creatininase from Pseudomonas putida: a novel fold and a case of convergent evolution.
    Beuth B; Niefind K; Schomburg D
    J Mol Biol; 2003 Sep; 332(1):287-301. PubMed ID: 12946365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallization and preliminary X-ray diffraction analysis of a thermostable D-hydantoinase from the mesophilic Bacillus sp. AR9.
    Agrawal V; Sharma R; Vohra RM; Kishan KV
    Acta Crystallogr D Biol Crystallogr; 2002 Dec; 58(Pt 12):2175-6. PubMed ID: 12454492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-terminal regions of D-hydantoinases are nonessential for catalysis, but affect the oligomeric structure.
    Kim GJ; Kim HS
    Biochem Biophys Res Commun; 1998 Feb; 243(1):96-100. PubMed ID: 9473486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering the thermostable D-hydantoinases from two thermophilic Bacilli based on their primary structures.
    Kim GJ; Park JH; Lee DC; Kim HS
    Ann N Y Acad Sci; 1998 Dec; 864():332-6. PubMed ID: 9928110
    [No Abstract]   [Full Text] [Related]  

  • 13. Phylogenetic analysis and biochemical characterization of a thermostable dihydropyrimidinase from alkaliphilic Bacillus sp. TS-23.
    Lin LL; Hsu WH; Hsu WY; Kan SC; Hu HY
    Antonie Van Leeuwenhoek; 2005; 88(3-4):189-97. PubMed ID: 16284925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary structure, sequence analysis, and expression of the thermostable D-hydantoinase from Bacillus stearothermophilus SD1.
    Kim GJ; Park JH; Lee DC; Ro HS; Kim HS
    Mol Gen Genet; 1997 Jun; 255(2):152-6. PubMed ID: 9236771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, catalytic mechanism, posttranslational lysine carbamylation, and inhibition of dihydropyrimidinases.
    Huang CY
    Adv Protein Chem Struct Biol; 2020; 122():63-96. PubMed ID: 32951816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverting enantioselectivity by directed evolution of hydantoinase for improved production of L-methionine.
    May O; Nguyen PT; Arnold FH
    Nat Biotechnol; 2000 Mar; 18(3):317-20. PubMed ID: 10700149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the structural similarity in the functionally related amidohydrolases acting on the cyclic amide ring.
    Kim GJ; Kim HS
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):295-302. PubMed ID: 9537960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp. YM55-1.
    Puthan Veetil V; Raj H; Quax WJ; Janssen DB; Poelarends GJ
    FEBS J; 2009 Jun; 276(11):2994-3007. PubMed ID: 19490103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modifying the oligomeric state of cyclic amidase and its effect on enzymatic catalysis.
    Yoon J; Oh B; Kim K; Park JE; Wang J; Kim HS; Kim Y
    Biochem Biophys Res Commun; 2003 Oct; 310(2):651-9. PubMed ID: 14521961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical properties of thermostable D-hydantoinase from Bacillus thermocatenulatus GH-2.
    Park JH; Kim GJ; Lee SG; Kim HS
    Ann N Y Acad Sci; 1998 Dec; 864():337-40. PubMed ID: 9928111
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.