These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 21414209)
1. Role of the gap junctions in the contractile response to agonists in pulmonary artery from two rat models of pulmonary hypertension. Billaud M; Dahan D; Marthan R; Savineau JP; Guibert C Respir Res; 2011 Mar; 12(1):30. PubMed ID: 21414209 [TBL] [Abstract][Full Text] [Related]
2. Magnesium attenuates endothelin-1-induced vasoreactivity and enhances vasodilatation in mouse pulmonary arteries: Modulation by chronic hypoxic pulmonary hypertension. Mu YP; Huang QH; Zhu JL; Zheng SY; Yan FR; Zhuang XL; Sham JSK; Lin MJ Exp Physiol; 2018 Apr; 103(4):604-616. PubMed ID: 29363240 [TBL] [Abstract][Full Text] [Related]
3. Role of gap junctions in the contractile response to agonists in the mesenteric resistance artery of rats with acute hypoxia. Liu H; Li XZ; Peng M; Ji W; Zhao L; Li L; Zhang L; Si JQ; Ma KT Mol Med Rep; 2017 Apr; 15(4):1823-1831. PubMed ID: 28259990 [TBL] [Abstract][Full Text] [Related]
4. Role for PKCβ in enhanced endothelin-1-induced pulmonary vasoconstrictor reactivity following intermittent hypoxia. Snow JB; Gonzalez Bosc LV; Kanagy NL; Walker BR; Resta TC Am J Physiol Lung Cell Mol Physiol; 2011 Nov; 301(5):L745-54. PubMed ID: 21803871 [TBL] [Abstract][Full Text] [Related]
5. TRPV4 channel contributes to serotonin-induced pulmonary vasoconstriction and the enhanced vascular reactivity in chronic hypoxic pulmonary hypertension. Xia Y; Fu Z; Hu J; Huang C; Paudel O; Cai S; Liedtke W; Sham JS Am J Physiol Cell Physiol; 2013 Oct; 305(7):C704-15. PubMed ID: 23739180 [TBL] [Abstract][Full Text] [Related]
6. Enhanced gap junctional channel activity between vascular smooth muscle cells in cerebral artery of spontaneously hypertensive rats. Wang LJ; Ma KT; Shi WY; Wang YZ; Zhao L; Chen XY; Li XZ; Jiang XW; Zhang ZS; Li L; Si JQ Clin Exp Hypertens; 2017; 39(4):295-305. PubMed ID: 28513236 [TBL] [Abstract][Full Text] [Related]
7. Impaired vasoconstriction and nitric oxide-mediated relaxation in pulmonary arteries of hypoxia- and monocrotaline-induced pulmonary hypertensive rats. Mam V; Tanbe AF; Vitali SH; Arons E; Christou HA; Khalil RA J Pharmacol Exp Ther; 2010 Feb; 332(2):455-62. PubMed ID: 19915069 [TBL] [Abstract][Full Text] [Related]
8. Sildenafil prevents change in RhoA expression induced by chronic hypoxia in rat pulmonary artery. Sauzeau V; Rolli-Derkinderen M; Lehoux S; Loirand G; Pacaud P Circ Res; 2003 Oct; 93(7):630-7. PubMed ID: 12946946 [TBL] [Abstract][Full Text] [Related]
9. Improved pulmonary vascular reactivity and decreased hypertrophic remodeling during nonhypercapnic acidosis in experimental pulmonary hypertension. Christou H; Reslan OM; Mam V; Tanbe AF; Vitali SH; Touma M; Arons E; Mitsialis SA; Kourembanas S; Khalil RA Am J Physiol Lung Cell Mol Physiol; 2012 May; 302(9):L875-90. PubMed ID: 22287610 [TBL] [Abstract][Full Text] [Related]
10. Connexin 43 Plays a Role in Pulmonary Vascular Reactivity in Mice. Htet M; Nally JE; Shaw A; Foote BE; Martin PE; Dempsie Y Int J Mol Sci; 2018 Jun; 19(7):. PubMed ID: 29954114 [TBL] [Abstract][Full Text] [Related]
13. Macrophage migration inhibitory factor contributes to hypoxic pulmonary vasoconstriction in rats. Zhang B; Luo Y; Liu ML; Wang J; Xu DQ; Dong MQ; Liu Y; Xu M; Dong HY; Zhao PT; Gao YQ; Li ZC Microvasc Res; 2012 Mar; 83(2):205-12. PubMed ID: 22005047 [TBL] [Abstract][Full Text] [Related]
14. Role of Ca(2+)-sensitive K(+) channels in the remission phase of pulmonary hypertension in chronic obstructive pulmonary diseases. Bonnet S; Savineau JP; Barillot W; Dubuis E; Vandier C; Bonnet P Cardiovasc Res; 2003 Nov; 60(2):326-36. PubMed ID: 14613862 [TBL] [Abstract][Full Text] [Related]
15. Differential effects of chronic hypoxia and intermittent hypocapnic and eucapnic hypoxia on pulmonary vasoreactivity. Snow JB; Kitzis V; Norton CE; Torres SN; Johnson KD; Kanagy NL; Walker BR; Resta TC J Appl Physiol (1985); 2008 Jan; 104(1):110-8. PubMed ID: 17947499 [TBL] [Abstract][Full Text] [Related]
16. Vascular smooth muscle modulates endothelial control of vasoreactivity via reactive oxygen species production through myoendothelial communications. Billaud M; Marthan R; Savineau JP; Guibert C PLoS One; 2009 Jul; 4(7):e6432. PubMed ID: 19649279 [TBL] [Abstract][Full Text] [Related]
17. [Chronic blockade of serotonin transporter promotes restoration of the sensitivity of pulmonary vessels to vasoconstrictive agents in rats with monocrotaline-induced pulmonary hypertension]. Kozhevnikova VV; Medvedeva NA Eksp Klin Farmakol; 2007; 70(4):26-9. PubMed ID: 18078038 [TBL] [Abstract][Full Text] [Related]
18. Ca2(+)-induced contraction and hyperreactivity of pulmonary arterial smooth muscle in monocrotaline-treated rats. Takenaka T; Ogawa Y; Tobise K Jpn Circ J; 1990 May; 54(5):515-23. PubMed ID: 2122039 [TBL] [Abstract][Full Text] [Related]
19. NGF increases Connexin-43 expression and function in pulmonary arterial smooth muscle cells to induce pulmonary artery hyperreactivity. Cardouat G; Douard M; Bouchet C; Roubenne L; Kmecová Z; Esteves P; Brette F; Guignabert C; Tu L; Campagnac M; Robillard P; Coste F; Delcambre F; Thumerel M; Begueret H; Maurac A; Belaroussi Y; Klimas J; Ducret T; Quignard JF; Vacher P; Baudrimont I; Marthan R; Berger P; Guibert C; Freund-Michel V Biomed Pharmacother; 2024 May; 174():116552. PubMed ID: 38599061 [TBL] [Abstract][Full Text] [Related]
20. Effects of streptozotocin-induced diabetes on the pharmacology of rat conduit and resistance intrapulmonary arteries. Gurney AM; Howarth FC Cardiovasc Diabetol; 2009 Jan; 8():4. PubMed ID: 19159454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]