These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 214146)

  • 1. Change of coupling system of receptor-adenylate cyclase induced by epinephrine and GTP in plasma membranes of rat liver.
    Okamura N; Terayama H
    Biochim Biophys Acta; 1978 Nov; 544(1):113-27. PubMed ID: 214146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the epinephrine-mediated activation of adenylate cyclase in plasma membranes from liver and ascites hepatomas of rats.
    Okamura N; Terayama H
    Biochim Biophys Acta; 1976 Dec; 455(2):297-314. PubMed ID: 187240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro characterization of skeletal muscle beta-adrenergic receptors coupled to adenylate cyclase.
    Reddy NB; Engel WK
    Biochim Biophys Acta; 1979 Jul; 585(3):343-59. PubMed ID: 226166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncoupled beta-adrenergic receptors and adenylate cyclase can be recoupled by a GTP-dependent cytosolic factor.
    Pecker F; Hanoune J
    FEBS Lett; 1977 Nov; 83(1):93-8. PubMed ID: 200491
    [No Abstract]   [Full Text] [Related]  

  • 5. Prostaglandin receptor-adenylate cyclase system in plasma membranes of rat liver and ascites hepatomas, and the effect of GTP upon it.
    Okamura N; Terayama H
    Biochim Biophys Acta; 1977 Feb; 465(1):54-67. PubMed ID: 189813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of beta-adrenergic receptors by guanyl-5'-yl imidodiphosphate and other purine nucleotides.
    Lefkowitz RJ; Mullikin D; Caron MG
    J Biol Chem; 1976 Aug; 251(15):4686-92. PubMed ID: 947904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for receptor-regulated phosphotransfer reactions involved in activation of the adenylate cyclase inhibitory G protein in human platelet membranes.
    Jakobs KH; Wieland T
    Eur J Biochem; 1989 Jul; 183(1):115-21. PubMed ID: 2502397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of adrenergic stimulation of hepatic adenylate cyclase by divalent cations.
    Jackowski MM; Johnson RA; Exton JH
    Biochim Biophys Acta; 1982 Jan; 714(1):74-83. PubMed ID: 6275906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-Adrenergic receptors and catecholamine-sensitive adenylate cyclase of the human placenta.
    Whitsett JA; Johnson CL; Noguchi A; Darovec-Beckerman C; Costello M
    J Clin Endocrinol Metab; 1980 Jan; 50(1):27-32. PubMed ID: 6243131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of beta-adrenergic receptors in untreated and butyrate-treated Hela cells.
    Tallman JF; Smith CC; Henneberry RC
    Biochim Biophys Acta; 1978 Jul; 541(3):288-300. PubMed ID: 208639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hepatic adenylate cyclase. Development-dependent coupling to the beta-adrenergic receptor in the neonate.
    Kawai Y; Graham SM; Whitsel C; Arinze IJ
    J Biol Chem; 1985 Sep; 260(19):10826-32. PubMed ID: 2993291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The epinephrine-sensitive adenylate cyclase of rat liver plasma membranes. Role of guanyl nucleotides.
    Hanoune J; Lacombe ML; Pecker F
    J Biol Chem; 1975 Jun; 250(12):4569-74. PubMed ID: 1141221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (+/-)-[3H]Epinephrine and (-)[3H]dihydroalprenolol binding to beta1- and beta2-noradrenergic receptors in brain, heart, and lung membranes.
    U'Prichard DC; Bylund DB; Snyder SH
    J Biol Chem; 1978 Jul; 253(14):5090-102. PubMed ID: 209026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of adenylate cyclase in bovine corpus-luteum membranes by human choriogonadotropin, guanine nucleotides and NaF.
    Lydon NB; Young JL; Stansfield DA
    Biochem J; 1981 Sep; 198(3):631-8. PubMed ID: 7326028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of adenylate cyclase-coupled beta-adrenergic receptors in frog erythrocytes with (minus)-[3-H] alprenolol.
    Mukherjee C; Caron MG; Coverstone M; Lefkowitz RJ
    J Biol Chem; 1975 Jul; 250(13):4869-76. PubMed ID: 238972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guanosine 5'-triphosphate and guanosine 5'-[beta gamma-imido]triphosphate effect a collision coupling mechanism between the glucagon receptor and catalytic unit of adenylate cyclase.
    Houslay MD; Dipple I; Elliott KR
    Biochem J; 1980 Mar; 186(3):649-58. PubMed ID: 6249258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical evidence for the dual action of labetalol on alpha- and beta-adrenoceptors.
    Aggerbeck M; Guellaen G; Hanoune J
    Br J Pharmacol; 1978 Apr; 62(4):543-8. PubMed ID: 26446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adipocyte beta-adrenergic receptors. Identification and subcellular localization by (-)-[3H]dihydroalprenolol binding.
    Williams LT; Jarett L; Lefkowitz RJ
    J Biol Chem; 1976 May; 251(10):3096-104. PubMed ID: 942608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of (-)-[3H]dihydroalprenolol to study beta adrenergic receptor-adenylate cyclase coupling in C6 glioma cells: role of 5'-guanylylimidodiphosphate.
    Lucas M; Bockaert J
    Mol Pharmacol; 1977 Mar; 13(2):314-29. PubMed ID: 192993
    [No Abstract]   [Full Text] [Related]  

  • 20. Alterations in the properties of beta-adrenergic receptors of myocardial membranes in aging: impairments in agonist-receptor interactions and guanine nucleotide regulation accompany diminished catecholamine-responsiveness of adenylate cyclase.
    Narayanan N; Derby JA
    Mech Ageing Dev; 1982 Jun; 19(2):127-39. PubMed ID: 6287123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.