These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21414647)

  • 1. Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads.
    Ohara Y; Horinouchi S; Hashimoto M; Shintaku Y; Yamanaka K
    Ultrasonics; 2011 Aug; 51(6):661-6. PubMed ID: 21414647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear ultrasonic phased array with fixed-voltage fundamental wave amplitude difference for high-selectivity imaging of closed cracks.
    Ohara Y; Nakajima H; Haupert S; Tsuji T; Mihara T
    J Acoust Soc Am; 2019 Jul; 146(1):266. PubMed ID: 31370588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image-based sizing of surface-breaking cracks by SH-wave array ultrasonic testing.
    Kimoto K; Ueno S; Hirose S
    Ultrasonics; 2006 Dec; 45(1-4):152-64. PubMed ID: 17005228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Selectivity imaging of the closed fatigue crack due to thermal environment using surface-acoustic-wave phased array (SAW PA).
    Ohara Y; Oshiumi T; Wu X; Uchimoto T; Takagi T; Tsuji T; Mihara T
    Ultrasonics; 2022 Feb; 119():106629. PubMed ID: 34700266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Damage detection of fatigue cracks under nonlinear boundary condition using subharmonic resonance.
    Zhang M; Xiao L; Qu W; Lu Y
    Ultrasonics; 2017 May; 77():152-159. PubMed ID: 28237824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamental wave amplitude difference imaging for detection and characterization of embedded cracks.
    Haupert S; Ohara Y; Carcreff E; Renaud G
    Ultrasonics; 2019 Jul; 96():132-139. PubMed ID: 30833180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-optical probing of the nonlinear acoustics of a crack.
    Mezil S; Chigarev N; Tournat V; Gusev V
    Opt Lett; 2011 Sep; 36(17):3449-51. PubMed ID: 21886240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: role of small cracks in life prediction.
    Dauskardt RH; Ritchie RO; Takemoto JK; Brendzel AM
    J Biomed Mater Res; 1994 Jul; 28(7):791-804. PubMed ID: 8083247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ultrasonic method for dynamic monitoring of fatigue crack initiation and growth.
    Mi B; Michaels JE; Michaels TE
    J Acoust Soc Am; 2006 Jan; 119(1):74-85. PubMed ID: 16454266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel.
    Bechtle S; Fett T; Rizzi G; Habelitz S; Schneider GA
    J Mech Behav Biomed Mater; 2010 May; 3(4):303-12. PubMed ID: 20346898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of adhesion force between crack planes on subharmonic and DC responses in nonlinear ultrasound.
    Ohara Y; Mihara T; Yamanaka K
    Ultrasonics; 2006 Feb; 44(2):194-9. PubMed ID: 16376399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue crack localization using noncontact laser ultrasonics and state space attractors.
    Liu P; Sohn H; Yang S; Kundu T
    J Acoust Soc Am; 2015 Aug; 138(2):890-8. PubMed ID: 26328704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of fatigue-induced micro-cracks in a pipe by using time-reversed nonlinear guided waves: a three-dimensional model study.
    Guo X; Zhang D; Zhang J
    Ultrasonics; 2012 Sep; 52(7):912-9. PubMed ID: 22429813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach.
    Shen Y; Cesnik CE
    Ultrasonics; 2017 Feb; 74():106-123. PubMed ID: 27770666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dentinal crack incidence following ultrasonic vibration to intra-radicular posts.
    Satterthwaite JD; Stokes AN
    N Z Dent J; 2004 Dec; 100(4):105-9. PubMed ID: 15656433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element analysis of indentation tests on pyrolytic carbon.
    Gilpin CB; Haubold AD; Ely JL
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S72-8. PubMed ID: 8794040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue Growth Behaviour of Two Interacting Cracks with Different Crack Offset.
    Jin H; Cui B; Mao L
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31661789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SEM analysis of the integrity of resected root apices of cadaver and extracted teeth after ultrasonic root-end preparation at different intensities.
    De Bruyne MA; De Moor RJ
    Int Endod J; 2005 May; 38(5):310-9. PubMed ID: 15876295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Closing Cracks in Beams Based on Responses Induced by Harmonic Excitation.
    Tewelde SA; Krawczuk M
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.