These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21414908)

  • 1. Protein misfolding and oxidative stress promote glial-mediated neurodegeneration in an Alexander disease model.
    Wang L; Colodner KJ; Feany MB
    J Neurosci; 2011 Feb; 31(8):2868-77. PubMed ID: 21414908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide mediates glial-induced neurodegeneration in Alexander disease.
    Wang L; Hagemann TL; Kalwa H; Michel T; Messing A; Feany MB
    Nat Commun; 2015 Nov; 6():8966. PubMed ID: 26608817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An In Vivo Pharmacological Screen Identifies Cholinergic Signaling as a Therapeutic Target in Glial-Based Nervous System Disease.
    Wang L; Hagemann TL; Messing A; Feany MB
    J Neurosci; 2016 Feb; 36(5):1445-55. PubMed ID: 26843629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of GFAP toxicity by alphaB-crystallin in mouse models of Alexander disease.
    Hagemann TL; Boelens WC; Wawrousek EF; Messing A
    Hum Mol Genet; 2009 Apr; 18(7):1190-9. PubMed ID: 19129171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27.
    Der Perng M; Su M; Wen SF; Li R; Gibbon T; Prescott AR; Brenner M; Quinlan RA
    Am J Hum Genet; 2006 Aug; 79(2):197-213. PubMed ID: 16826512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GFAP aggregates in the cochlear nerve increase the noise vulnerability of sensory cells in the organ of Corti in the murine model of Alexander disease.
    Masuda M; Tanaka KF; Kanzaki S; Wakabayashi K; Oishi N; Suzuki T; Ikenaka K; Ogawa K
    Neurosci Res; 2008 Sep; 62(1):15-24. PubMed ID: 18602179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression analysis in mice with elevated glial fibrillary acidic protein and Rosenthal fibers reveals a stress response followed by glial activation and neuronal dysfunction.
    Hagemann TL; Gaeta SA; Smith MA; Johnson DA; Johnson JA; Messing A
    Hum Mol Genet; 2005 Aug; 14(16):2443-58. PubMed ID: 16014634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevated GFAP isoform expression promotes protein aggregation and compromises astrocyte function.
    Lin NH; Yang AW; Chang CH; Perng MD
    FASEB J; 2021 May; 35(5):e21614. PubMed ID: 33908669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response.
    Hagemann TL; Connor JX; Messing A
    J Neurosci; 2006 Oct; 26(43):11162-73. PubMed ID: 17065456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beneficial effects of Nrf2 overexpression in a mouse model of Alexander disease.
    LaPash Daniels CM; Austin EV; Rockney DE; Jacka EM; Hagemann TL; Johnson DA; Johnson JA; Messing A
    J Neurosci; 2012 Aug; 32(31):10507-15. PubMed ID: 22855800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallothionein prevents neurodegeneration and central nervous system cell death after treatment with gliotoxin 6-aminonicotinamide.
    Penkowa M; Quintana A; Carrasco J; Giralt M; Molinero A; Hidalgo J
    J Neurosci Res; 2004 Jul; 77(1):35-53. PubMed ID: 15197737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Alexander disease with patient iPSCs reveals cellular and molecular pathology of astrocytes.
    Kondo T; Funayama M; Miyake M; Tsukita K; Era T; Osaka H; Ayaki T; Takahashi R; Inoue H
    Acta Neuropathol Commun; 2016 Jul; 4(1):69. PubMed ID: 27402089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glial α-synuclein promotes neurodegeneration characterized by a distinct transcriptional program in vivo.
    Olsen AL; Feany MB
    Glia; 2019 Oct; 67(10):1933-1957. PubMed ID: 31267577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease.
    Pekny T; Faiz M; Wilhelmsson U; Curtis MA; Matej R; Skalli O; Pekny M
    APMIS; 2014 Jan; 122(1):76-80. PubMed ID: 23594359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pexidartinib treatment in Alexander disease model mice reduces macrophage numbers and increases glial fibrillary acidic protein levels, yet has minimal impact on other disease phenotypes.
    Boyd MM; Litscher SJ; Seitz LL; Messing A; Hagemann TL; Collier LS
    J Neuroinflammation; 2021 Mar; 18(1):67. PubMed ID: 33685480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel deletion mutation in GFAP gene in an infantile form of Alexander disease.
    Murakami N; Tsuchiya T; Kanazawa N; Tsujino S; Nagai T
    Pediatr Neurol; 2008 Jan; 38(1):50-2. PubMed ID: 18054694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Murine model of Alexander disease: analysis of GFAP aggregate formation and its pathological significance.
    Tanaka KF; Takebayashi H; Yamazaki Y; Ono K; Naruse M; Iwasato T; Itohara S; Kato H; Ikenaka K
    Glia; 2007 Apr; 55(6):617-31. PubMed ID: 17299771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease.
    Hagemann TL; Powers B; Mazur C; Kim A; Wheeler S; Hung G; Swayze E; Messing A
    Ann Neurol; 2018 Jan; 83(1):27-39. PubMed ID: 29226998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease.
    Sosunov AA; McKhann GM; Goldman JE
    Acta Neuropathol Commun; 2017 Mar; 5(1):27. PubMed ID: 28359321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glial fibrillary acidic protein exhibits altered turnover kinetics in a mouse model of Alexander disease.
    Moody LR; Barrett-Wilt GA; Sussman MR; Messing A
    J Biol Chem; 2017 Apr; 292(14):5814-5824. PubMed ID: 28223355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.