These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 21414932)

  • 1. Adaptation to a cortex-controlled robot attached at the pelvis and engaged during locomotion in rats.
    Song W; Giszter SF
    J Neurosci; 2011 Feb; 31(8):3110-28. PubMed ID: 21414932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple types of movement-related information encoded in hindlimb/trunk cortex in rats and potentially available for brain-machine interface controls.
    Song W; Ramakrishnan A; Udoekwere UI; Giszter SF
    IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2712-6. PubMed ID: 19605313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation to elastic loads and BMI robot controls during rat locomotion examined with point-process GLMs.
    Song W; Cajigas I; Brown EN; Giszter SF
    Front Syst Neurosci; 2015; 9():62. PubMed ID: 25972789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.
    Oza CS; Giszter SF
    J Neurosci; 2015 May; 35(18):7174-89. PubMed ID: 25948267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence.
    Udoekwere UI; Oza CS; Giszter SF
    J Neurosci; 2016 Aug; 36(32):8341-55. PubMed ID: 27511008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats.
    Alam M; Chen X; Zhang Z; Li Y; He J
    PLoS One; 2014; 9(8):e103764. PubMed ID: 25084446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Timescales of Local and Cross-Area Interactions during Neuroprosthetic Learning.
    Derosier K; Veuthey TL; Ganguly K
    J Neurosci; 2021 Dec; 41(49):10120-10129. PubMed ID: 34732522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of locomotion speed and directions changes to control a vehicle using neural signals from the motor cortex of rat.
    Fukayama O; Taniguchi N; Suzuki T; Mabuchi K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1138-41. PubMed ID: 17946876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pelvic implant orthosis in rodents, for spinal cord injury rehabilitation, and for brain machine interface research: construction, surgical implantation and validation.
    Udoekwere UI; Oza CS; Giszter SF
    J Neurosci Methods; 2014 Jan; 222():199-206. PubMed ID: 24269175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robot application of elastic fields to the pelvis of the spinal transected rat: a tool for detailed assessment and rehabilitation.
    Udoekwere UI; Ramakrishnan A; Mbi L; Giszter SF
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3684-7. PubMed ID: 17947050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation.
    Rebesco JM; Miller LE
    Prog Brain Res; 2011; 192():83-102. PubMed ID: 21763520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification.
    Emken JL; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):33-9. PubMed ID: 15813404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain-Machine Interface-Based Rat-Robot Behavior Control.
    Zhang J; Xu K; Zhang S; Wang Y; Zheng N; Pan G; Chen W; Wu Z; Zheng X
    Adv Exp Med Biol; 2019; 1101():123-147. PubMed ID: 31729674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rodent lumbar spinal cord learns to correct errors in hindlimb coordination caused by viscous force perturbations during stepping.
    Heng C; de Leon RD
    J Neurosci; 2007 Aug; 27(32):8558-62. PubMed ID: 17687033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fetal transplants rescue axial muscle representations in M1 cortex of neonatally transected rats that develop weight support.
    Giszter SF; Kargo WJ; Davies M; Shibayama M
    J Neurophysiol; 1998 Dec; 80(6):3021-30. PubMed ID: 9862903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.
    DiGiovanna J; Dominici N; Friedli L; Rigosa J; Duis S; Kreider J; Beauparlant J; van den Brand R; Schieppati M; Micera S; Courtine G
    J Neurosci; 2016 Oct; 36(40):10440-10455. PubMed ID: 27707977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Complete Brain-machine Interfaces and Plastic Changes in the Brain].
    Sakurai Y
    Brain Nerve; 2010 Oct; 62(10):1059-65. PubMed ID: 20940505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A symbiotic brain-machine interface through value-based decision making.
    Mahmoudi B; Sanchez JC
    PLoS One; 2011 Mar; 6(3):e14760. PubMed ID: 21423797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the motor cortex in the control of vigour of locomotor movements in the cat.
    Beloozerova IN; Sirota MG
    J Physiol; 1993 Feb; 461():27-46. PubMed ID: 8350266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex.
    Hunter T; Sacco P; Nitsche MA; Turner DL
    J Physiol; 2009 Jun; 587(Pt 12):2949-61. PubMed ID: 19403605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.