BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 21415041)

  • 1. Ex vivo gene transfer for improved adoptive immunotherapy of cancer.
    Ngo MC; Rooney CM; Howard JM; Heslop HE
    Hum Mol Genet; 2011 Apr; 20(R1):R93-9. PubMed ID: 21415041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current status of genetic modification of T cells for cancer treatment.
    Dotti G; Heslop HE
    Cytotherapy; 2005; 7(3):262-72. PubMed ID: 16081353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential and promise for clinical application of adoptive T cell therapy in cancer.
    Li Y; Zheng Y; Liu T; Liao C; Shen G; He Z
    J Transl Med; 2024 May; 22(1):413. PubMed ID: 38693513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer immunotherapy with lymphocytes genetically engineered with T cell receptors for solid cancers.
    Chen L; Qiao D; Wang J; Tian G; Wang M
    Immunol Lett; 2019 Dec; 216():51-62. PubMed ID: 31597088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for enhancing adoptive T-cell immunotherapy against solid tumors using engineered cytokine signaling and other modalities.
    Shum T; Kruse RL; Rooney CM
    Expert Opin Biol Ther; 2018 Jun; 18(6):653-664. PubMed ID: 29727246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors.
    Zhang BL; Qin DY; Mo ZM; Li Y; Wei W; Wang YS; Wang W; Wei YQ
    Sci China Life Sci; 2016 Apr; 59(4):340-8. PubMed ID: 26965525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chimeric switch receptor: switching for improved adoptive T-cell therapy against cancers.
    Tay JC; Zha S; Wang S
    Immunotherapy; 2017 Dec; 9(16):1339-1349. PubMed ID: 29185393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hematopoietic stem cells for cancer immunotherapy.
    Gschweng E; De Oliveira S; Kohn DB
    Immunol Rev; 2014 Jan; 257(1):237-49. PubMed ID: 24329801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors.
    Zhang E; Gu J; Xu H
    Mol Cancer; 2018 Jan; 17(1):7. PubMed ID: 29329591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology.
    Kalos M; June CH
    Immunity; 2013 Jul; 39(1):49-60. PubMed ID: 23890063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and Characterization of an HLA-DRB1*04-Restricted HPV16-E7 T Cell Receptor for Cancer Immunotherapy.
    Mercier-Letondal P; Marton C; Deschamps M; Ferrand C; Vauchy C; Chenut C; Baguet A; Adotévi O; Borg C; Galaine J; Godet Y
    Hum Gene Ther; 2018 Oct; 29(10):1202-1212. PubMed ID: 30136612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering T cells for adoptive therapy: outsmarting the tumor.
    Kunert A; Debets R
    Curr Opin Immunol; 2018 Apr; 51():133-139. PubMed ID: 29579622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adoptive cellular therapy with tumor vaccine draining lymph node lymphocytes after vaccination with HLA-B7/beta2-microglobulin gene-modified autologous tumor cells.
    Meijer SL; Dols A; Urba WJ; Hu HM; Smith II JW; Vetto J; Wood W; Doran T; Chu Y; Sayaharuban P; Alvord WG; Fox BA
    J Immunother; 2002; 25(4):359-72. PubMed ID: 12142559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity.
    Yu S; Yi M; Qin S; Wu K
    Mol Cancer; 2019 Aug; 18(1):125. PubMed ID: 31429760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. T-cell-based Immunotherapy: Adoptive Cell Transfer and Checkpoint Inhibition.
    Houot R; Schultz LM; Marabelle A; Kohrt H
    Cancer Immunol Res; 2015 Oct; 3(10):1115-22. PubMed ID: 26438444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adoptive immunotherapy with genetically modified lymphocytes in allogeneic stem cell transplantation.
    Cieri N; Mastaglio S; Oliveira G; Casucci M; Bondanza A; Bonini C
    Immunol Rev; 2014 Jan; 257(1):165-80. PubMed ID: 24329796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IND-Enabling Studies for a Clinical Trial to Genetically Program a Persistent Cancer-Targeted Immune System.
    Puig-Saus C; Parisi G; Garcia-Diaz A; Krystofinski PE; Sandoval S; Zhang R; Champhekar AS; McCabe J; Cheung-Lau GC; Truong NA; Vega-Crespo A; Komenan MDS; Pang J; Macabali MH; Saco JD; Goodwin JL; Bolon B; Seet CS; Montel-Hagen A; Crooks GM; Hollis RP; Campo-Fernandez B; Bischof D; Cornetta K; Gschweng EH; Adelson C; Nguyen A; Yang L; Witte ON; Baltimore D; Comin-Anduix B; Kohn DB; Wang X; Cabrera P; Kaplan-Lefko PJ; Berent-Maoz B; Ribas A
    Clin Cancer Res; 2019 Feb; 25(3):1000-1011. PubMed ID: 30409823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T cell receptor-based cancer immunotherapy: Emerging efficacy and pathways of resistance.
    Chandran SS; Klebanoff CA
    Immunol Rev; 2019 Jul; 290(1):127-147. PubMed ID: 31355495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies to genetically engineer T cells for cancer immunotherapy.
    Spear TT; Nagato K; Nishimura MI
    Cancer Immunol Immunother; 2016 Jun; 65(6):631-49. PubMed ID: 27138532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adoptive cell therapy: genetic modification to redirect effector cell specificity.
    Morgan RA; Dudley ME; Rosenberg SA
    Cancer J; 2010; 16(4):336-41. PubMed ID: 20693844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.