These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21415096)

  • 1. Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria.
    Wang S; Lawson R; Ray PC; Yu H
    Toxicol Ind Health; 2011 Jul; 27(6):547-54. PubMed ID: 21415096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From the Cover: An Investigation of the Genotoxicity and Interference of Gold Nanoparticles in Commonly Used In Vitro Mutagenicity and Genotoxicity Assays.
    George JM; Magogotya M; Vetten MA; Buys AV; Gulumian M
    Toxicol Sci; 2017 Mar; 156(1):149-166. PubMed ID: 28108664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-induced mutagenicity in Salmonella TA102 and genotoxicity/cytotoxicity in human T-cells by 3,3'-dichlorobenzidine: a chemical used in the manufacture of dyes and pigments and in tattoo inks.
    Wang L; Yan J; Hardy W; Mosley C; Wang S; Yu H
    Toxicology; 2005 Feb; 207(3):411-8. PubMed ID: 15664269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of poly(propylene imine)-dendrimer-grafted gold nanoparticles as nanocarriers of doxorubicin.
    Golshan M; Salami-Kalajahi M; Mirshekarpour M; Roghani-Mamaqani H; Mohammadi M
    Colloids Surf B Biointerfaces; 2017 Jul; 155():257-265. PubMed ID: 28433942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial photomutagenicity testing: distinction between direct, enzyme-mediated and light-induced events.
    Utesch D; Splittgerber J
    Mutat Res; 1996 Sep; 361(1):41-8. PubMed ID: 8816942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-induced cytotoxicity and genotoxicity of a sunscreen agent, 2-phenylbenzimidazole in Salmonella typhimurium TA 102 and HaCaT keratinocytes.
    Mosley CN; Wang L; Gilley S; Wang S; Yu H
    Int J Environ Res Public Health; 2007 Jun; 4(2):126-31. PubMed ID: 17617675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-templated gold nanoparticles formation.
    Sun L; Song Y; Wang L; Sun Y; Guo C; Liu Z; Li Z
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4415-23. PubMed ID: 19049035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pre-Incubation of Auric Acid with DNA Is Unnecessary for the Formation of DNA-Templated Gold Nanoclusters.
    Chen Y; Tao G; Lin R; Pei X; Liu F; Li N
    Chem Asian J; 2016 Jun; 11(11):1677-81. PubMed ID: 27060903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid seeded growth of monodisperse, quasi-spherical, citrate-stabilized gold nanoparticles via H2O2 reduction.
    Liu X; Xu H; Xia H; Wang D
    Langmuir; 2012 Sep; 28(38):13720-6. PubMed ID: 22954316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photomutagenicity of thiabendazole, a postharvest fungicide, in bacterial assays.
    Watanabe-Akanuma M; Ohta T; Yamagata H
    Environ Mol Mutagen; 2003; 41(2):92-8. PubMed ID: 12605377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactants-aided syntheses of different sizes and triangular shape of gold nanoparticles using trisodium citrate in environmentally friendly and photoinduced methods.
    Su YH; Lai WH; Chang SH; Hon MH
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3146-51. PubMed ID: 18019141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenolics impart Au(3+)-stress tolerance to cowpea by generating nanoparticles.
    Shabnam N; Pardha-Saradhi P; Sharmila P
    PLoS One; 2014; 9(1):e85242. PubMed ID: 24416368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutagenicity of UV-irradiated maltol in Salmonella typhimurium.
    Watanabe-Akanuma M; Inaba Y; Ohta T
    Mutagenesis; 2007 Jan; 22(1):43-7. PubMed ID: 17169979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of gold nanopeanuts by citrate reduction of gold chloride on gold-silver core-shell nanoparticles.
    Xie W; Su L; Donfack P; Shen A; Zhou X; Sackmann M; Materny A; Hu J
    Chem Commun (Camb); 2009 Sep; (35):5263-5. PubMed ID: 19707640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile preparation of SERS-active nanostructured Au spheres by simple reduction of AuCl4- ions with EDOT.
    Hong JY; Huh S
    J Colloid Interface Sci; 2014 Mar; 418():360-5. PubMed ID: 24461856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biological synthesis of gold nanoparticles by the xylotrophic basidiomycete Lentinula edodes].
    Vetchinkina EP; Burov AM; Ageeva MV; Dykman LA; Nikitina VE
    Prikl Biokhim Mikrobiol; 2013; 49(4):402-8. PubMed ID: 24455867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic formation of gold nanoparticles by submerged culture of the basidiomycete Lentinus edodes.
    Vetchinkina EP; Loshchinina EA; Burov AM; Dykman LA; Nikitina VE
    J Biotechnol; 2014 Jul; 182-183():37-45. PubMed ID: 24800960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels.
    Iswarya V; Manivannan J; De A; Paul S; Roy R; Johnson JB; Kundu R; Chandrasekaran N; Mukherjee A; Mukherjee A
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4844-58. PubMed ID: 26545887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of L-phenylalanine stabilized gold nanoparticles and their thermal stability.
    Nayak NC; Shin K
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3512-6. PubMed ID: 17252801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling.
    Basu S; Ghosh SK; Kundu S; Panigrahi S; Praharaj S; Pande S; Jana S; Pal T
    J Colloid Interface Sci; 2007 Sep; 313(2):724-34. PubMed ID: 17540397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.