These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 21415177)

  • 1. Particle capture into the lung made simple?
    de Vasconcelos TF; Sapoval B; Andrade JS; Grotberg JB; Hu Y; Filoche M
    J Appl Physiol (1985); 2011 Jun; 110(6):1664-73. PubMed ID: 21415177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree.
    Sznitman J; Heimsch T; Wildhaber JH; Tsuda A; Rösgen T
    J Biomech Eng; 2009 Mar; 131(3):031010. PubMed ID: 19154069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hood nebulization: effects of head direction and breathing mode on particle inhalability and deposition in a 7-month-old infant model.
    Kim J; Xi J; Si X; Berlinski A; Su WC
    J Aerosol Med Pulm Drug Deliv; 2014 Jun; 27(3):209-18. PubMed ID: 23808762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs.
    Nowak N; Kakade PP; Annapragada AV
    Ann Biomed Eng; 2003 Apr; 31(4):374-90. PubMed ID: 12723679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micron particle deposition in a tracheobronchial airway model under different breathing conditions.
    Inthavong K; Choi LT; Tu J; Ding S; Thien F
    Med Eng Phys; 2010 Dec; 32(10):1198-212. PubMed ID: 20855226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung.
    Koullapis PG; Hofemeier P; Sznitman J; Kassinos SC
    Eur J Pharm Sci; 2018 Feb; 113():132-144. PubMed ID: 28917963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicted Deposition of E-Cigarette Aerosol in the Human Lungs.
    Sosnowski TR; Kramek-Romanowska K
    J Aerosol Med Pulm Drug Deliv; 2016 Jun; 29(3):299-309. PubMed ID: 26907696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An adjustable triple-bifurcation unit model for air-particle flow simulations in human tracheobronchial airways.
    Kleinstreuer C; Zhang Z
    J Biomech Eng; 2009 Feb; 131(2):021007. PubMed ID: 19102566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways.
    Xi J; Longest PW; Martonen TB
    J Appl Physiol (1985); 2008 Jun; 104(6):1761-77. PubMed ID: 18388247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry model.
    Cassee FR; Muijser H; Duistermaat E; Freijer JJ; Geerse KB; Marijnissen JC; Arts JH
    Arch Toxicol; 2002 Jun; 76(5-6):277-86. PubMed ID: 12107645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow field analysis in a compliant acinus replica model using particle image velocimetry (PIV).
    Berg EJ; Weisman JL; Oldham MJ; Robinson RJ
    J Biomech; 2010 Apr; 43(6):1039-47. PubMed ID: 20116064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational analysis of micron-particle deposition in a human triple bifurcation airway model.
    Zhang Z; Kleinstreuer C; Kim CS
    Comput Methods Biomech Biomed Engin; 2002 Apr; 5(2):135-47. PubMed ID: 12186723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of particle inlet distributions on deposition in a triple bifurcation lung airway model.
    Zhang Z; Kleinstreuer C
    J Aerosol Med; 2001; 14(1):13-29. PubMed ID: 11495482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow field analysis in expanding healthy and emphysematous alveolar models using particle image velocimetry.
    Oakes JM; Day S; Weinstein SJ; Robinson RJ
    J Biomech Eng; 2010 Feb; 132(2):021008. PubMed ID: 20370245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part I: Theory and model validation.
    Kolanjiyil AV; Kleinstreuer C
    Comput Biol Med; 2016 Dec; 79():193-204. PubMed ID: 27810625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LES modelling of flow in a simple airway model.
    Luo XY; Hinton JS; Liew TT; Tan KK
    Med Eng Phys; 2004 Jun; 26(5):403-13. PubMed ID: 15147748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle deposition in children's lungs: theory and experiment.
    Isaacs KK; Martonen TB
    J Aerosol Med; 2005; 18(3):337-53. PubMed ID: 16181008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convective flow dominates aerosol delivery to the lung segments.
    Darquenne C; van Ertbruggen C; Prisk GK
    J Appl Physiol (1985); 2011 Jul; 111(1):48-54. PubMed ID: 21474695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics.
    van Ertbruggen C; Hirsch C; Paiva M
    J Appl Physiol (1985); 2005 Mar; 98(3):970-80. PubMed ID: 15501925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways.
    Xi J; Longest PW
    Ann Biomed Eng; 2008 Oct; 36(10):1714-34. PubMed ID: 18712605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.