These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 21415351)
1. Independent and parallel recruitment of preexisting mechanisms underlying C₄ photosynthesis. Brown NJ; Newell CA; Stanley S; Chen JE; Perrin AJ; Kajala K; Hibberd JM Science; 2011 Mar; 331(6023):1436-9. PubMed ID: 21415351 [TBL] [Abstract][Full Text] [Related]
2. Deep evolutionary comparison of gene expression identifies parallel recruitment of trans-factors in two independent origins of C4 photosynthesis. Aubry S; Kelly S; Kümpers BM; Smith-Unna RD; Hibberd JM PLoS Genet; 2014 Jun; 10(6):e1004365. PubMed ID: 24901697 [TBL] [Abstract][Full Text] [Related]
3. Multiple Arabidopsis genes primed for recruitment into C₄ photosynthesis. Kajala K; Brown NJ; Williams BP; Borrill P; Taylor LE; Hibberd JM Plant J; 2012 Jan; 69(1):47-56. PubMed ID: 21883556 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of C(4)-cycle enzymes in transgenic C(3) plants: a biotechnological approach to improve C(3)-photosynthesis. Häusler RE; Hirsch HJ; Kreuzaler F; Peterhänsel C J Exp Bot; 2002 Apr; 53(369):591-607. PubMed ID: 11886879 [TBL] [Abstract][Full Text] [Related]
5. Evolution of the C(4) photosynthetic mechanism: are there really three C(4) acid decarboxylation types? Furbank RT J Exp Bot; 2011 May; 62(9):3103-8. PubMed ID: 21511901 [TBL] [Abstract][Full Text] [Related]
6. Diversity in forms of C4 in the genus Cleome (Cleomaceae). Koteyeva NK; Voznesenskaya EV; Roalson EH; Edwards GE Ann Bot; 2011 Feb; 107(2):269-83. PubMed ID: 21147832 [TBL] [Abstract][Full Text] [Related]
7. Evolution of RLSB, a nuclear-encoded S1 domain RNA binding protein associated with post-transcriptional regulation of plastid-encoded rbcL mRNA in vascular plants. Yerramsetty P; Stata M; Siford R; Sage TL; Sage RF; Wong GK; Albert VA; Berry JO BMC Evol Biol; 2016 Jun; 16(1):141. PubMed ID: 27356975 [TBL] [Abstract][Full Text] [Related]
8. The future of C4 research--maize, Flaveria or Cleome? Brown NJ; Parsley K; Hibberd JM Trends Plant Sci; 2005 May; 10(5):215-21. PubMed ID: 15882653 [TBL] [Abstract][Full Text] [Related]
9. An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Bräutigam A; Kajala K; Wullenweber J; Sommer M; Gagneul D; Weber KL; Carr KM; Gowik U; Mass J; Lercher MJ; Westhoff P; Hibberd JM; Weber AP Plant Physiol; 2011 Jan; 155(1):142-56. PubMed ID: 20543093 [TBL] [Abstract][Full Text] [Related]
10. The promoter of rbcS in a C3 plant (rice) directs organ-specific, light-dependent expression in a C4 plant (maize), but does not confer bundle sheath cell-specific expression. Nomura M; Katayama K; Nishimura A; Ishida Y; Ohta S; Komari T; Miyao-Tokutomi M; Tajima S; Matsuoka M Plant Mol Biol; 2000 Sep; 44(1):99-106. PubMed ID: 11094984 [TBL] [Abstract][Full Text] [Related]
12. Compartmentation of photosynthesis in cells and tissues of C(4) plants. Edwards GE; Franceschi VR; Ku MS; Voznesenskaya EV; Pyankov VI; Andreo CS J Exp Bot; 2001 Apr; 52(356):577-90. PubMed ID: 11373306 [TBL] [Abstract][Full Text] [Related]
13. Effects of Overproduction of Rubisco Activase on Rubisco Content in Transgenic Rice Grown at Different N Levels. Suganami M; Suzuki Y; Kondo E; Nishida S; Konno S; Makino A Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32120887 [TBL] [Abstract][Full Text] [Related]
14. Genetic determinants controlling maize rubisco activase gene expression and a comparison with rice counterparts. Zhang Y; Zhou Y; Sun Q; Deng D; Liu H; Chen S; Yin Z BMC Plant Biol; 2019 Aug; 19(1):351. PubMed ID: 31412785 [TBL] [Abstract][Full Text] [Related]
15. Adaptation responses in C4 photosynthesis of maize under salinity. Omoto E; Taniguchi M; Miyake H J Plant Physiol; 2012 Mar; 169(5):469-77. PubMed ID: 22209164 [TBL] [Abstract][Full Text] [Related]
16. Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Xia XJ; Huang LF; Zhou YH; Mao WH; Shi K; Wu JX; Asami T; Chen Z; Yu JQ Planta; 2009 Nov; 230(6):1185-96. PubMed ID: 19760261 [TBL] [Abstract][Full Text] [Related]
17. Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS. Suzuki Y; Miyamoto T; Yoshizawa R; Mae T; Makino A Plant Cell Environ; 2009 Apr; 32(4):417-27. PubMed ID: 19183297 [TBL] [Abstract][Full Text] [Related]
18. A Small Decrease in Rubisco Content by Individual Suppression of RBCS Genes Leads to Improvement of Photosynthesis and Greater Biomass Production in Rice Under Conditions of Elevated CO2. Kanno K; Suzuki Y; Makino A Plant Cell Physiol; 2017 Mar; 58(3):635-642. PubMed ID: 28158810 [TBL] [Abstract][Full Text] [Related]
19. Coleataenia prionitis, a C Tashima M; Yabiku T; Ueno O Photosynth Res; 2021 Feb; 147(2):211-227. PubMed ID: 33393063 [TBL] [Abstract][Full Text] [Related]
20. Unusual small subunit that is not expressed in photosynthetic cells alters the catalytic properties of rubisco in rice. Morita K; Hatanaka T; Misoo S; Fukayama H Plant Physiol; 2014 Jan; 164(1):69-79. PubMed ID: 24254313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]