These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21415467)

  • 1. Coupled quantum dot-ring structures by droplet epitaxy.
    Somaschini C; Bietti S; Koguchi N; Sanguinetti S
    Nanotechnology; 2011 May; 22(18):185602. PubMed ID: 21415467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled GaAs/AlGaAs coupled quantum ring-disk structures by droplet epitaxy.
    Somaschini C; Bietti S; Sanguinetti S; Koguchi N; Fedorov A
    Nanotechnology; 2010 Mar; 21(12):125601. PubMed ID: 20182013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-narrow emission from single GaAs self-assembled quantum dots grown by droplet epitaxy.
    Mano T; Abbarchi M; Kuroda T; Mastrandrea CA; Vinattieri A; Sanguinetti S; Sakoda K; Gurioli M
    Nanotechnology; 2009 Sep; 20(39):395601. PubMed ID: 19724114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast emission dynamics in droplet epitaxy GaAs ring-disk nanostructures integrated on Si.
    Cavigli L; Bietti S; Abbarchi M; Somaschini C; Vinattieri A; Gurioli M; Fedorov A; Isella G; Grilli E; Sanguinetti S
    J Phys Condens Matter; 2012 Mar; 24(10):104017. PubMed ID: 22353556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of nanohole formation by etching based on droplet epitaxy.
    Li X; Wu J; Wang ZM; Liang B; Lee J; Kim ES; Salamo GJ
    Nanoscale; 2014 Mar; 6(5):2675-81. PubMed ID: 24445506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-temperature droplet epitaxy of symmetric GaAs/AlGaAs quantum dots.
    Bietti S; Basset FB; Tuktamyshev A; Bonera E; Fedorov A; Sanguinetti S
    Sci Rep; 2020 Apr; 10(1):6532. PubMed ID: 32300114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the fabrication mechanism of self-assembled GaAs quantum rings grown by droplet epitaxy.
    Tong CZ; Yoon SF
    Nanotechnology; 2008 Sep; 19(36):365604. PubMed ID: 21828875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lasing in ultra-narrow emission from GaAs quantum dots coupled with a two-dimensional layer.
    Jo M; Mano T; Sakoda K
    Nanotechnology; 2011 Aug; 22(33):335201. PubMed ID: 21775803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Various Quantum- and Nano-Structures by III-V Droplet Epitaxy on GaAs Substrates.
    Lee J; Wang ZhM; Kim E; Kim N; Park Sh; Salamo G
    Nanoscale Res Lett; 2009 Nov; 5(2):308-14. PubMed ID: 20671787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Yield Fabrication of Entangled Photon Emitters for Hybrid Quantum Networking Using High-Temperature Droplet Epitaxy.
    Basso Basset F; Bietti S; Reindl M; Esposito L; Fedorov A; Huber D; Rastelli A; Bonera E; Trotta R; Sanguinetti S
    Nano Lett; 2018 Jan; 18(1):505-512. PubMed ID: 29239186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape control of InGaAs nanostructures on nominal GaAs(001): dashes and dots.
    Kim DJ; Yang H
    Nanotechnology; 2008 Nov; 19(47):475601. PubMed ID: 21836276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic-Scale Characterization of Droplet Epitaxy Quantum Dots.
    Gajjela RSR; Koenraad PM
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of quantum ring formation during droplet epitaxy.
    Zhou ZY; Zheng CX; Tang WX; Tersoff J; Jesson DE
    Phys Rev Lett; 2013 Jul; 111(3):036102. PubMed ID: 23909340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth Interruption Effect on the Fabrication of GaAs Concentric Multiple Rings by Droplet Epitaxy.
    Somaschini C; Bietti S; Fedorov A; Koguchi N; Sanguinetti S
    Nanoscale Res Lett; 2010 Aug; 5(12):1897-900. PubMed ID: 21170414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of nitrogen pressure during molecular beam epitaxy growth of InAsN quantum dots.
    Fälth JF; Yoon SF; Tan KH; Fitzgerald EA
    Nanotechnology; 2008 Jan; 19(4):045608. PubMed ID: 21817514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentric Multiple Rings by Droplet Epitaxy: Fabrication and Study of the Morphological Anisotropy.
    Somaschini C; Bietti S; Fedorov A; Koguchi N; Sanguinetti S
    Nanoscale Res Lett; 2010 Aug; 5(12):1865-7. PubMed ID: 21170420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet etching of deep nanoholes for filling with self-aligned complex quantum structures.
    Küster A; Heyn C; Ungeheuer A; Juska G; Tommaso Moroni S; Pelucchi E; Hansen W
    Nanoscale Res Lett; 2016 Dec; 11(1):282. PubMed ID: 27255902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature Dependence of Carrier Extraction Processes in GaSb/AlGaAs Quantum Nanostructure Intermediate-Band Solar Cells.
    Shoji Y; Tamaki R; Okada Y
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33573008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical Properties of a Quantum Dot-Ring System Grown Using Droplet Epitaxy.
    Linares-García G; Meza-Montes L; Stinaff E; Alsolamy SM; Ware ME; Mazur YI; Wang ZM; Lee J; Salamo GJ
    Nanoscale Res Lett; 2016 Dec; 11(1):309. PubMed ID: 27342603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positioning of quantum dots on metallic nanostructures.
    Kramer RK; Pholchai N; Sorger VJ; Yim TJ; Oulton R; Zhang X
    Nanotechnology; 2010 Apr; 21(14):145307. PubMed ID: 20234079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.