These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 21415474)
1. Synthesis and gas sensing properties of α-Fe(2)O(3)@ZnO core-shell nanospindles. Zhang J; Liu X; Wang L; Yang T; Guo X; Wu S; Wang S; Zhang S Nanotechnology; 2011 May; 22(18):185501. PubMed ID: 21415474 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and enhanced ethanol sensing characteristics of alpha-Fe2O3/SnO2 core-shell nanorods. Chen YJ; Zhu CL; Wang LJ; Gao P; Cao MS; Shi XL Nanotechnology; 2009 Jan; 20(4):045502. PubMed ID: 19417318 [TBL] [Abstract][Full Text] [Related]
3. Glycine-assisted hydrothermal synthesis of peculiar porous alpha-Fe2O3 nanospheres with excellent gas-sensing properties. Chen H; Zhao Y; Yang M; He J; Chu PK; Zhang J; Wu S Anal Chim Acta; 2010 Feb; 659(1-2):266-73. PubMed ID: 20103134 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of SnO2-ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties. Choi SW; Park JY; Kim SS Nanotechnology; 2009 Nov; 20(46):465603. PubMed ID: 19847030 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional hierarchical flowerlike α-Fe2O3 nanostructures: synthesis and ethanol-sensing properties. Wang L; Fei T; Lou Z; Zhang T ACS Appl Mater Interfaces; 2011 Dec; 3(12):4689-94. PubMed ID: 22053952 [TBL] [Abstract][Full Text] [Related]
6. Design of Au@ZnO yolk-shell nanospheres with enhanced gas sensing properties. Li X; Zhou X; Guo H; Wang C; Liu J; Sun P; Liu F; Lu G ACS Appl Mater Interfaces; 2014 Nov; 6(21):18661-7. PubMed ID: 25290085 [TBL] [Abstract][Full Text] [Related]
7. Porous alpha-Fe2O3 decorated by Au nanoparticles and their enhanced sensor performance. Liu X; Zhang J; Guo X; Wu S; Wang S Nanotechnology; 2010 Mar; 21(9):095501. PubMed ID: 20110579 [TBL] [Abstract][Full Text] [Related]
8. NiO@ZnO heterostructured nanotubes: coelectrospinning fabrication, characterization, and highly enhanced gas sensing properties. Xu L; Zheng R; Liu S; Song J; Chen J; Dong B; Song H Inorg Chem; 2012 Jul; 51(14):7733-40. PubMed ID: 22747254 [TBL] [Abstract][Full Text] [Related]
9. Monodispersed core-shell Fe3O4@Au nanoparticles. Wang L; Luo J; Fan Q; Suzuki M; Suzuki IS; Engelhard MH; Lin Y; Kim N; Wang JQ; Zhong CJ J Phys Chem B; 2005 Nov; 109(46):21593-601. PubMed ID: 16853803 [TBL] [Abstract][Full Text] [Related]
10. Role of the interfaces in multiple networked one-dimensional core-shell nanostructured gas sensors. Park S; Ko H; Kim S; Lee C ACS Appl Mater Interfaces; 2014 Jun; 6(12):9595-600. PubMed ID: 24850501 [TBL] [Abstract][Full Text] [Related]
11. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564 [TBL] [Abstract][Full Text] [Related]
12. Tuning the field distribution and fabrication of an Al@ZnO core-shell nanostructure for a SPR-based fiber optic phenyl hydrazine sensor. Tabassum R; Kaur P; Gupta BD Nanotechnology; 2016 May; 27(21):215501. PubMed ID: 27079452 [TBL] [Abstract][Full Text] [Related]
13. Ethanol Gas Detection Using a Yolk-Shell (Core-Shell) α-Fe2O3 Nanospheres as Sensing Material. Wang L; Lou Z; Deng J; Zhang R; Zhang T ACS Appl Mater Interfaces; 2015 Jun; 7(23):13098-104. PubMed ID: 26010465 [TBL] [Abstract][Full Text] [Related]
14. A facile method to fabricate carbon-encapsulated Fe(3)O(4) core/shell composites. Xuan S; Hao L; Jiang W; Gong X; Hu Y; Chen Z Nanotechnology; 2007 Jan; 18(3):035602. PubMed ID: 19636125 [TBL] [Abstract][Full Text] [Related]
15. Ultrafast hydrothermal synthesis of high quality magnetic core phenol-formaldehyde shell composite microspheres using the microwave method. You LJ; Xu S; Ma WF; Li D; Zhang YT; Guo J; Hu JJ; Wang CC Langmuir; 2012 Jul; 28(28):10565-72. PubMed ID: 22712558 [TBL] [Abstract][Full Text] [Related]
16. UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature. Park S; An S; Mun Y; Lee C ACS Appl Mater Interfaces; 2013 May; 5(10):4285-92. PubMed ID: 23627276 [TBL] [Abstract][Full Text] [Related]
17. N-P transition sensing behaviors of ZnO nanotubes exposed to NO2 gas. Wang JX; Sun XW; Yang Y; Wu CM Nanotechnology; 2009 Nov; 20(46):465501. PubMed ID: 19843994 [TBL] [Abstract][Full Text] [Related]
18. One-step synthesis of core(Cr)/shell(gamma-Fe(2)O(3)) nanoparticles. Lai J; Shafi KV; Ulman A; Loos K; Popovitz-Biro R; Lee Y; Vogt T; Estournès C J Am Chem Soc; 2005 Apr; 127(16):5730-1. PubMed ID: 15839638 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of spindle Fe(2)O(3)@polypyrrole core/shell particles by surface-modified hematite templating and conversion to spindle polypyrrole capsules and carbon capsules. Xuan S; Fang Q; Hao L; Jiang W; Gong X; Hu Y; Chen Z J Colloid Interface Sci; 2007 Oct; 314(2):502-9. PubMed ID: 17570382 [TBL] [Abstract][Full Text] [Related]
20. ZnO-ZnGa2O4 core-shell nanowire array for stable photoelectrochemical water splitting. Zhong M; Li Y; Yamada I; Delaunay JJ Nanoscale; 2012 Mar; 4(5):1509-14. PubMed ID: 22200054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]