These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Roles of small laccases from Streptomyces in lignin degradation. Majumdar S; Lukk T; Solbiati JO; Bauer S; Nair SK; Cronan JE; Gerlt JA Biochemistry; 2014 Jun; 53(24):4047-58. PubMed ID: 24870309 [TBL] [Abstract][Full Text] [Related]
7. Laccases for biorefinery applications: a critical review on challenges and perspectives. Roth S; Spiess AC Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966 [TBL] [Abstract][Full Text] [Related]
8. Biomedical and Pharmaceutical-Related Applications of Laccases. Mohit E; Tabarzad M; Faramarzi MA Curr Protein Pept Sci; 2020; 21(1):78-98. PubMed ID: 31660814 [TBL] [Abstract][Full Text] [Related]
9. New strategy for grafting hydrophobization of lignocellulosic fiber materials with octadecylamine using a laccase/TEMPO system. Dong A; Teklu KM; Wang W; Fan X; Wang Q; Ardanuy M; Dong Z Int J Biol Macromol; 2020 Oct; 160():192-200. PubMed ID: 32450328 [TBL] [Abstract][Full Text] [Related]
10. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy. Munk L; Andersen ML; Meyer AS Enzyme Microb Technol; 2017 Nov; 106():88-96. PubMed ID: 28859815 [TBL] [Abstract][Full Text] [Related]
11. Laccase-Catalyzed Surface Modification of Thermo-Mechanical Pulp (TMP) for the Production of Wood Fiber Insulation Boards Using Industrial Process Water. Schubert M; Ruedin P; Civardi C; Richter M; Hach A; Christen H PLoS One; 2015; 10(6):e0128623. PubMed ID: 26046652 [TBL] [Abstract][Full Text] [Related]
12. Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Jeon JR; Baldrian P; Murugesan K; Chang YS Microb Biotechnol; 2012 May; 5(3):318-32. PubMed ID: 21791030 [TBL] [Abstract][Full Text] [Related]
13. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. Bourbonnais R; Paice MG FEBS Lett; 1990 Jul; 267(1):99-102. PubMed ID: 2365094 [TBL] [Abstract][Full Text] [Related]
14. High-Throughput Screening Assay for Laccase Engineering toward Lignosulfonate Valorization. Rodríguez-Escribano D; de Salas F; Pardo I; Camarero S Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28820431 [TBL] [Abstract][Full Text] [Related]
15. Potential applications of laccase-mediated coupling and grafting reactions: a review. Kudanga T; Nyanhongo GS; Guebitz GM; Burton S Enzyme Microb Technol; 2011 Mar; 48(3):195-208. PubMed ID: 22112901 [TBL] [Abstract][Full Text] [Related]
16. Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Cañas AI; Camarero S Biotechnol Adv; 2010; 28(6):694-705. PubMed ID: 20471466 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of monolignol biotransformation by Rhus laccases in water-miscible organic solutions. Wan YY; Miyakoshi T; Du YM; Chen LJ; Hao JM; Kennedy JF Int J Biol Macromol; 2012 Apr; 50(3):530-3. PubMed ID: 22289862 [TBL] [Abstract][Full Text] [Related]
18. Hydrophobic surface functionalization of lignocellulosic jute fabrics by enzymatic grafting of octadecylamine. Dong A; Fan X; Wang Q; Yu Y; Cavaco-Paulo A Int J Biol Macromol; 2015 Aug; 79():353-62. PubMed ID: 25987460 [TBL] [Abstract][Full Text] [Related]
19. On the reactions of two fungal laccases differing in their redox potential with lignin model compounds: products and their rate of formation. Lahtinen M; Kruus K; Heinonen P; Sipilä J J Agric Food Chem; 2009 Sep; 57(18):8357-65. PubMed ID: 19702333 [TBL] [Abstract][Full Text] [Related]
20. Development and optimization of single and combined detoxification processes to improve the fermentability of lignocellulose hydrolyzates. Ludwig D; Amann M; Hirth T; Rupp S; Zibek S Bioresour Technol; 2013 Apr; 133():455-61. PubMed ID: 23454802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]