These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21415925)

  • 1. Fitting neuron models to spike trains.
    Rossant C; Goodman DF; Fontaine B; Platkiewicz J; Magnusson AK; Brette R
    Front Neurosci; 2011; 5():9. PubMed ID: 21415925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic fitting of spiking neuron models to electrophysiological recordings.
    Rossant C; Goodman DF; Platkiewicz J; Brette R
    Front Neuroinform; 2010; 4():2. PubMed ID: 20224819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brian: a simulator for spiking neural networks in python.
    Goodman D; Brette R
    Front Neuroinform; 2008; 2():5. PubMed ID: 19115011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms.
    Hagen E; Ness TV; Khosrowshahi A; Sørensen C; Fyhn M; Hafting T; Franke F; Einevoll GT
    J Neurosci Methods; 2015 Apr; 245():182-204. PubMed ID: 25662445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ANNarchy: a code generation approach to neural simulations on parallel hardware.
    Vitay J; Dinkelbach HÜ; Hamker FH
    Front Neuroinform; 2015; 9():19. PubMed ID: 26283957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Highly Effective and Robust Membrane Potential-Driven Supervised Learning Method for Spiking Neurons.
    Zhang M; Qu H; Belatreche A; Chen Y; Yi Z
    IEEE Trans Neural Netw Learn Syst; 2019 Jan; 30(1):123-137. PubMed ID: 29993588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brian hears: online auditory processing using vectorization over channels.
    Fontaine B; Goodman DF; Benichoux V; Brette R
    Front Neuroinform; 2011; 5():9. PubMed ID: 21811453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Approximation to the Adaptive Exponential Integrate-and-Fire Neuron Model Allows Fast and Predictive Fitting to Physiological Data.
    Hertäg L; Hass J; Golovko T; Durstewitz D
    Front Comput Neurosci; 2012; 6():62. PubMed ID: 22973220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parameter estimation of neuron models using in-vitro and in-vivo electrophysiological data.
    Lynch EP; Houghton CJ
    Front Neuroinform; 2015; 9():10. PubMed ID: 25941485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The brian simulator.
    Goodman DF; Brette R
    Front Neurosci; 2009 Sep; 3(2):192-7. PubMed ID: 20011141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brian2CUDA: Flexible and Efficient Simulation of Spiking Neural Network Models on GPUs.
    Alevi D; Stimberg M; Sprekeler H; Obermayer K; Augustin M
    Front Neuroinform; 2022; 16():883700. PubMed ID: 36387586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Firing-rate models capture essential response dynamics of LGN relay cells.
    Heiberg T; Kriener B; Tetzlaff T; Casti A; Einevoll GT; Plesser HE
    J Comput Neurosci; 2013 Dec; 35(3):359-75. PubMed ID: 23783890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive inverse control of neural spatiotemporal spike patterns with a reproducing kernel Hilbert space (RKHS) framework.
    Li L; Park IM; Brockmeier A; Chen B; Seth S; Francis JT; Sanchez JC; Príncipe JC
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):532-43. PubMed ID: 22868633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.
    Schwemmer MA; Fairhall AL; Denéve S; Shea-Brown ET
    J Neurosci; 2015 Jul; 35(28):10112-34. PubMed ID: 26180189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold.
    Kobayashi R; Tsubo Y; Shinomoto S
    Front Comput Neurosci; 2009; 3():9. PubMed ID: 19668702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What can a neuron learn with spike-timing-dependent plasticity?
    Legenstein R; Naeger C; Maass W
    Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-Scale Simulation of a Layered Cortical Sheet of Spiking Network Model Using a Tile Partitioning Method.
    Igarashi J; Yamaura H; Yamazaki T
    Front Neuroinform; 2019; 13():71. PubMed ID: 31849631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient simulation environment for modeling large-scale cortical processing.
    Richert M; Nageswaran JM; Dutt N; Krichmar JL
    Front Neuroinform; 2011; 5():19. PubMed ID: 22007166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brian 2, an intuitive and efficient neural simulator.
    Stimberg M; Brette R; Goodman DF
    Elife; 2019 Aug; 8():. PubMed ID: 31429824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.