These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21415925)

  • 21. Discrete time rescaling theorem: determining goodness of fit for discrete time statistical models of neural spiking.
    Haslinger R; Pipa G; Brown E
    Neural Comput; 2010 Oct; 22(10):2477-506. PubMed ID: 20608868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering Spiking Neurons Using Threshold Switching Devices for High-Efficient Neuromorphic Computing.
    Ding Y; Zhang Y; Zhang X; Chen P; Zhang Z; Yang Y; Cheng L; Mu C; Wang M; Xiang D; Wu G; Zhou K; Yuan Z; Liu Q
    Front Neurosci; 2021; 15():786694. PubMed ID: 35069102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of Linear and Nonlinear Sensory Processing Circuits from Spiking Neuron Data.
    Florescu D; Coca D
    Neural Comput; 2018 Mar; 30(3):670-707. PubMed ID: 29342394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PyGeNN: A Python Library for GPU-Enhanced Neural Networks.
    Knight JC; Komissarov A; Nowotny T
    Front Neuroinform; 2021; 15():659005. PubMed ID: 33967731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling the Short-Term Dynamics of
    Ghanbari A; Ren N; Keine C; Stoelzel C; Englitz B; Swadlow HA; Stevenson IH
    J Neurosci; 2020 May; 40(21):4185-4202. PubMed ID: 32303648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient Point-Process Modeling of Spiking Neurons for Neuroprosthesis.
    Li W; Qian C; Qi Y; Wang Y; Wang Y; Pan G
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6198-6202. PubMed ID: 34892531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast Simulations of Highly-Connected Spiking Cortical Models Using GPUs.
    Golosio B; Tiddia G; De Luca C; Pastorelli E; Simula F; Paolucci PS
    Front Comput Neurosci; 2021; 15():627620. PubMed ID: 33679358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlation between neural spike trains increases with firing rate.
    de la Rocha J; Doiron B; Shea-Brown E; Josić K; Reyes A
    Nature; 2007 Aug; 448(7155):802-6. PubMed ID: 17700699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brainlab: A Python Toolkit to Aid in the Design, Simulation, and Analysis of Spiking Neural Networks with the NeoCortical Simulator.
    Drewes R; Zou Q; Goodman PH
    Front Neuroinform; 2009; 3():16. PubMed ID: 19506707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overview of facts and issues about neural coding by spikes.
    Cessac B; Paugam-Moisy H; Viéville T
    J Physiol Paris; 2010; 104(1-2):5-18. PubMed ID: 19925865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of time-varying neural dynamics from spike train data using multiwavelet basis functions.
    Xu S; Li Y; Guo Q; Yang XF; Chan RHM
    J Neurosci Methods; 2017 Feb; 278():46-56. PubMed ID: 28062244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling multiscale causal interactions between spiking and field potential signals during behavior.
    Wang C; Pesaran B; Shanechi MM
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35073530
    [No Abstract]   [Full Text] [Related]  

  • 33. Stochastic optimal control of single neuron spike trains.
    Iolov A; Ditlevsen S; Longtin A
    J Neural Eng; 2014 Aug; 11(4):046004. PubMed ID: 24891497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Capturing the Dynamical Repertoire of Single Neurons with Generalized Linear Models.
    Weber AI; Pillow JW
    Neural Comput; 2017 Dec; 29(12):3260-3289. PubMed ID: 28957020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photonic spiking neural networks with event-driven femtojoule optoelectronic neurons based on Izhikevich-inspired model.
    Lee YJ; On MB; Xiao X; Proietti R; Yoo SJB
    Opt Express; 2022 May; 30(11):19360-19389. PubMed ID: 36221716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vectorized algorithms for spiking neural network simulation.
    Brette R; Goodman DF
    Neural Comput; 2011 Jun; 23(6):1503-35. PubMed ID: 21395437
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A prefrontal network model operating near steady and oscillatory states links spike desynchronization and synaptic deficits in schizophrenia.
    Crowe DA; Willow A; Blackman RK; DeNicola AL; Chafee MV; Amirikian B
    Elife; 2024 Feb; 13():. PubMed ID: 38319151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporally precise control of single-neuron spiking by juxtacellular nanostimulation.
    Stüttgen MC; Nonkes LJP; Geis HRAP; Tiesinga PH; Houweling AR
    J Neurophysiol; 2017 Mar; 117(3):1363-1378. PubMed ID: 28077663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient parameter calibration and real-time simulation of large-scale spiking neural networks with GeNN and NEST.
    Schmitt FJ; Rostami V; Nawrot MP
    Front Neuroinform; 2023; 17():941696. PubMed ID: 36844916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive closed-loop paradigm of electrophysiology for neuron models.
    Yang M; Wang J; Li S; Wang K; Yue W; Liu C
    Neural Netw; 2023 Aug; 165():406-419. PubMed ID: 37329784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.