These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 21415939)

  • 1. Modeling the spatial spread of infectious diseases: the GLobal Epidemic and Mobility computational model.
    Balcan D; Gonçalves B; Hu H; Ramasco JJ; Colizza V; Vespignani A
    J Comput Sci; 2010 Aug; 1(3):132-145. PubMed ID: 21415939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale.
    Van den Broeck W; Gioannini C; Gonçalves B; Quaggiotto M; Colizza V; Vespignani A
    BMC Infect Dis; 2011 Feb; 11():37. PubMed ID: 21288355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models.
    Ajelli M; Gonçalves B; Balcan D; Colizza V; Hu H; Ramasco JJ; Merler S; Vespignani A
    BMC Infect Dis; 2010 Jun; 10():190. PubMed ID: 20587041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How the individual human mobility spatio-temporally shapes the disease transmission dynamics.
    Changruenngam S; Bicout DJ; Modchang C
    Sci Rep; 2020 Jul; 10(1):11325. PubMed ID: 32647225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human mobility and time spent at destination: impact on spatial epidemic spreading.
    Poletto C; Tizzoni M; Colizza V
    J Theor Biol; 2013 Dec; 338():41-58. PubMed ID: 24012488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The modeling of global epidemics: stochastic dynamics and predictability.
    Colizza V; Barrat A; Barthélemy M; Vespignani A
    Bull Math Biol; 2006 Nov; 68(8):1893-921. PubMed ID: 17086489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical inference using GLEaM model with spatial heterogeneity and correlation between regions.
    Tan Y; Zhang Y; Cheng X; Zhou XH
    Sci Rep; 2022 Oct; 12(1):16630. PubMed ID: 36198691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating dynamical modeling and phylogeographic inference to characterize global influenza circulation.
    Parino F; Gustani-Buss E; Bedford T; Suchard MA; Trovão NS; Rambaut A; Colizza V; Poletto C; Lemey P
    medRxiv; 2024 Mar; ():. PubMed ID: 38559244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay between epidemic spread and information propagation on metapopulation networks.
    Wang B; Han Y; Tanaka G
    J Theor Biol; 2017 May; 420():18-25. PubMed ID: 28259661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decisions under uncertainty: a computational framework for quantification of policies addressing infectious disease epidemics.
    Mikler AR; Venkatachalam S; Ramisetty-Mikler S
    Stoch Environ Res Risk Assess; 2007; 21(5):533. PubMed ID: 32214899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating neighborhood structures for modeling intercity diffusion of large-scale dengue epidemics.
    Wen TH; Hsu CS; Hu MC
    Int J Health Geogr; 2018 May; 17(1):9. PubMed ID: 29724243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale mobility networks and the spatial spreading of infectious diseases.
    Balcan D; Colizza V; Gonçalves B; Hu H; Ramasco JJ; Vespignani A
    Proc Natl Acad Sci U S A; 2009 Dec; 106(51):21484-9. PubMed ID: 20018697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaps in mobility data and implications for modelling epidemic spread: A scoping review and simulation study.
    Wardle J; Bhatia S; Kraemer MUG; Nouvellet P; Cori A
    Epidemics; 2023 Mar; 42():100666. PubMed ID: 36689876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing sources of mobility for modelling the epidemic spread of Zika virus in Colombia.
    Perrotta D; Frias-Martinez E; Pastore Y Piontti A; Zhang Q; Luengo-Oroz M; Paolotti D; Tizzoni M; Vespignani A
    PLoS Negl Trop Dis; 2022 Jul; 16(7):e0010565. PubMed ID: 35857744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spread of COVID-19 in China: analysis from a city-based epidemic and mobility model.
    Wei Y; Wang J; Song W; Xiu C; Ma L; Pei T
    Cities; 2021 Mar; 110():103010. PubMed ID: 33162634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parameter Scaling for Epidemic Size in a Spatial Epidemic Model with Mobile Individuals.
    Urabe CT; Tanaka G; Aihara K; Mimura M
    PLoS One; 2016; 11(12):e0168127. PubMed ID: 27973605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the use of human mobility proxies for modeling epidemics.
    Tizzoni M; Bajardi P; Decuyper A; Kon Kam King G; Schneider CM; Blondel V; Smoreda Z; González MC; Colizza V
    PLoS Comput Biol; 2014 Jul; 10(7):e1003716. PubMed ID: 25010676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible, Freely Available Stochastic Individual Contact Model for Exploring COVID-19 Intervention and Control Strategies: Development and Simulation.
    Churches T; Jorm L
    JMIR Public Health Surveill; 2020 Sep; 6(3):e18965. PubMed ID: 32568729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study.
    Colizza V; Barrat A; Barthélemy M; Vespignani A
    BMC Med; 2007 Nov; 5():34. PubMed ID: 18031574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the use of mobile phone data to describe recurrent mobility patterns in spatial epidemic models.
    Panigutti C; Tizzoni M; Bajardi P; Smoreda Z; Colizza V
    R Soc Open Sci; 2017 May; 4(5):160950. PubMed ID: 28572990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.