These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 21416085)
1. New insight into the soot nanoparticles in a candle flame. Su Z; Zhou W; Zhang Y Chem Commun (Camb); 2011 Apr; 47(16):4700-2. PubMed ID: 21416085 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of monodisperse polymer nanoparticles by membrane emulsification using ordered anodic porous alumina. Yanagishita T; Fujimura R; Nishio K; Masuda H Langmuir; 2010 Feb; 26(3):1516-9. PubMed ID: 20000338 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion. Qahtan TF; Gondal MA; Alade IO; Dastageer MA Sci Rep; 2017 Aug; 7(1):7531. PubMed ID: 28790392 [TBL] [Abstract][Full Text] [Related]
4. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays. Huang CH; Lin HY; Lau BC; Liu CY; Chui HC; Tzeng Y Opt Express; 2010 Dec; 18(26):27891-9. PubMed ID: 21197062 [TBL] [Abstract][Full Text] [Related]
5. The use of heterogeneous chemistry for the characterization of functional groups at the gas/particle interface of soot and TiO2 nanoparticles. Setyan A; Sauvain JJ; Rossi MJ Phys Chem Chem Phys; 2009 Aug; 11(29):6205-17. PubMed ID: 19606331 [TBL] [Abstract][Full Text] [Related]
6. Characterization of combustion-generated carbonaceous nanoparticles by size-dependent ultraviolet laser photoionization. Commodo M; Sgro LA; Minutolo P; D'Anna A J Phys Chem A; 2013 May; 117(19):3980-9. PubMed ID: 23586344 [TBL] [Abstract][Full Text] [Related]
7. Insights into the effect of combustion-generated carbon nanoparticles on biological membranes: a computer simulation study. Chang R; Violi A J Phys Chem B; 2006 Mar; 110(10):5073-83. PubMed ID: 16526750 [TBL] [Abstract][Full Text] [Related]
8. Structural and magnetic properties of Fe and Co nanoparticles embedded in powdered Al2O3. Santini O; de Moraes AR; Mosca DH; de Souza PE; de Oliveira AJ; Marangoni R; Wypych F J Colloid Interface Sci; 2005 Sep; 289(1):63-70. PubMed ID: 16009218 [TBL] [Abstract][Full Text] [Related]
9. Highly sensitive thermoluminescent carbon doped nanoporous aluminium oxide detectors. de Azevedo WM; de Oliveira GB; da Silva EF; Khoury HJ; Oliveira de Jesus EF Radiat Prot Dosimetry; 2006; 119(1-4):201-5. PubMed ID: 16644938 [TBL] [Abstract][Full Text] [Related]
10. Conical tungsten stamps for the replication of pore arrays in anodic aluminium oxide films. LeClere DJ; Thompson GE; Derby B Nanotechnology; 2009 Jun; 20(24):245304. PubMed ID: 19468168 [TBL] [Abstract][Full Text] [Related]
11. Nanoporous aluminum oxide membranes for filtration and biofunctionalization. Thormann A; Teuscher N; Pfannmöller M; Rothe U; Heilmann A Small; 2007 Jun; 3(6):1032-40. PubMed ID: 17492744 [TBL] [Abstract][Full Text] [Related]
12. Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature. Chung CK; Zhou RX; Liu TY; Chang WT Nanotechnology; 2009 Feb; 20(5):055301. PubMed ID: 19417342 [TBL] [Abstract][Full Text] [Related]
13. The effect of process parameters on the Liquid Flame Spray generated titania nanoparticles. Aromaa M; Keskinen H; Mäkelä JM Biomol Eng; 2007 Nov; 24(5):543-8. PubMed ID: 17950664 [TBL] [Abstract][Full Text] [Related]
14. New carbon materials: biological applications of functionalized nanodiamond materials. Krueger A Chemistry; 2008; 14(5):1382-90. PubMed ID: 18033700 [TBL] [Abstract][Full Text] [Related]
15. Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Lee W; Schwirn K; Steinhart M; Pippel E; Scholz R; Gösele U Nat Nanotechnol; 2008 Apr; 3(4):234-9. PubMed ID: 18654508 [TBL] [Abstract][Full Text] [Related]
16. Interfacial properties of emulsions stabilized with surfactant and nonsurfactant coated boehmite nanoparticles. Tigges B; Dederichs T; Möller M; Liu T; Richtering W; Weichold O Langmuir; 2010 Dec; 26(23):17913-8. PubMed ID: 21028858 [TBL] [Abstract][Full Text] [Related]
17. Engineering low-aspect ratio carbon nanostructures: nanocups, nanorings, and nanocontainers. Chun H; Hahm MG; Homma Y; Meritz R; Kuramochi K; Menon L; Ci L; Ajayan PM; Jung YJ ACS Nano; 2009 May; 3(5):1274-8. PubMed ID: 19408923 [TBL] [Abstract][Full Text] [Related]
18. Influence of thermal treatment on nanostructured gold model catalysts. Bowker M; Broughton M; Carley A; Davies P; Morgan D; Crouch J; Lalev G; Dimov S; Pham DT Langmuir; 2010 Nov; 26(21):16261-6. PubMed ID: 20509644 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles. Boguslavsky Y; Margel S J Colloid Interface Sci; 2008 Jan; 317(1):101-14. PubMed ID: 17927999 [TBL] [Abstract][Full Text] [Related]
20. Ferrocene-functionalized carbon nanoparticles. Song Y; Kang X; Zuckerman NB; Phebus B; Konopelski JP; Chen S Nanoscale; 2011 May; 3(5):1984-9. PubMed ID: 21347490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]