BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 21416095)

  • 1. Challenges for physical characterization of silver nanoparticles under pristine and environmentally relevant conditions.
    MacCuspie RI; Rogers K; Patra M; Suo Z; Allen AJ; Martin MN; Hackley VA
    J Environ Monit; 2011 May; 13(5):1212-26. PubMed ID: 21416095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters.
    Chinnapongse SL; MacCuspie RI; Hackley VA
    Sci Total Environ; 2011 May; 409(12):2443-50. PubMed ID: 21481439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface charge-dependent toxicity of silver nanoparticles.
    El Badawy AM; Silva RG; Morris B; Scheckel KG; Suidan MT; Tolaymat TM
    Environ Sci Technol; 2011 Jan; 45(1):283-7. PubMed ID: 21133412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics.
    Zhang W; Yao Y; Sullivan N; Chen Y
    Environ Sci Technol; 2011 May; 45(10):4422-8. PubMed ID: 21513312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests.
    Römer I; White TA; Baalousha M; Chipman K; Viant MR; Lead JR
    J Chromatogr A; 2011 Jul; 1218(27):4226-33. PubMed ID: 21529813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers.
    Zhang H; Smith JA; Oyanedel-Craver V
    Water Res; 2012 Mar; 46(3):691-9. PubMed ID: 22169660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid, reversible preparation of size-controllable silver nanoplates by chemical redox.
    Roh J; Yi J; Kim Y
    Langmuir; 2010 Jul; 26(14):11621-3. PubMed ID: 20550181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli.
    Gurunathan S; Kalishwaralal K; Vaidyanathan R; Venkataraman D; Pandian SR; Muniyandi J; Hariharan N; Eom SH
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):328-35. PubMed ID: 19716685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-dependent uptake of silver nanoparticles in Daphnia magna.
    Zhao CM; Wang WX
    Environ Sci Technol; 2012 Oct; 46(20):11345-51. PubMed ID: 22974052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humic acid-induced silver nanoparticle formation under environmentally relevant conditions.
    Akaighe N; Maccuspie RI; Navarro DA; Aga DS; Banerjee S; Sohn M; Sharma VK
    Environ Sci Technol; 2011 May; 45(9):3895-901. PubMed ID: 21456573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance.
    Zook JM; Long SE; Cleveland D; Geronimo CL; MacCuspie RI
    Anal Bioanal Chem; 2011 Oct; 401(6):1993-2002. PubMed ID: 21808990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition.
    Reinsch BC; Levard C; Li Z; Ma R; Wise A; Gregory KB; Brown GE; Lowry GV
    Environ Sci Technol; 2012 Jul; 46(13):6992-7000. PubMed ID: 22296331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersion stabilization of silver nanoparticles in synthetic lung fluid studied under in situ conditions.
    MacCuspie RI; Allen AJ; Hackley VA
    Nanotoxicology; 2011 Jun; 5(2):140-56. PubMed ID: 21609136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disinfection action of electrostatic versus steric-stabilized silver nanoparticles on E. coli under different water chemistries.
    Fauss EK; MacCuspie RI; Oyanedel-Craver V; Smith JA; Swami NS
    Colloids Surf B Biointerfaces; 2014 Jan; 113():77-84. PubMed ID: 24060931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure assessment of workplaces manufacturing nanosized TiO2 and silver.
    Lee JH; Kwon M; Ji JH; Kang CS; Ahn KH; Han JH; Yu IJ
    Inhal Toxicol; 2011 Mar; 23(4):226-36. PubMed ID: 21456955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry.
    Yang Y; Long CL; Li HP; Wang Q; Yang ZG
    Sci Total Environ; 2016 Sep; 563-564():996-1007. PubMed ID: 26895948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles.
    Zhang W; Yao Y; Li K; Huang Y; Chen Y
    Environ Pollut; 2011 Dec; 159(12):3757-62. PubMed ID: 21835520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation and characterization of isotopically modified silver nanoparticles in aqueous media using asymmetric-flow field flow fractionation coupled to optical detection and mass spectrometry.
    Gigault J; Hackley VA
    Anal Chim Acta; 2013 Feb; 763():57-66. PubMed ID: 23340287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silver release from silver nanoparticles in natural waters.
    Dobias J; Bernier-Latmani R
    Environ Sci Technol; 2013 May; 47(9):4140-6. PubMed ID: 23517230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle size distributions of silver nanoparticles at environmentally relevant conditions.
    Cumberland SA; Lead JR
    J Chromatogr A; 2009 Dec; 1216(52):9099-105. PubMed ID: 19647834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.