These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21416099)

  • 1. Formation and modeling of disinfection by-products in drinking water of six cities in China.
    Ye B; Wang W; Yang L; Wei J; E X
    J Environ Monit; 2011 May; 13(5):1271-5. PubMed ID: 21416099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study for distribution level of disinfection byproducts in drinking water from six cities in China].
    Deng Y; Wei J; E X; Wang W; et al
    Wei Sheng Yan Jiu; 2008 Mar; 37(2):207-10. PubMed ID: 18589610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial and temporal evaluations of disinfection by-products in drinking water distribution systems in Beijing, China.
    Wei J; Ye B; Wang W; Yang L; Tao J; Hang Z
    Sci Total Environ; 2010 Sep; 408(20):4600-6. PubMed ID: 20663540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research.
    Richardson SD; Plewa MJ; Wagner ED; Schoeny R; Demarini DM
    Mutat Res; 2007; 636(1-3):178-242. PubMed ID: 17980649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing disinfection by-products formation in drinking water of six cities in China.
    Ye B; Wang W; Yang L; Wei J; E X
    J Hazard Mater; 2009 Nov; 171(1-3):147-52. PubMed ID: 19540042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Investigation on the levels of carbon-, nitrogen-, iodine-containing disinfection by-products in a water plant in Jiangsu province, China].
    Liu XL; Zheng WW; Wei X; Chen HY; Wang X; Zhang HM; Jiang SH; He GS; Qu WD
    Zhonghua Yu Fang Yi Xue Za Zhi; 2012 Feb; 46(2):133-8. PubMed ID: 22490195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The occurrence of disinfection by-products in municipal drinking water in China's Pearl River Delta and a multipathway cancer risk assessment.
    Gan W; Guo W; Mo J; He Y; Liu Y; Liu W; Liang Y; Yang X
    Sci Total Environ; 2013 Mar; 447():108-15. PubMed ID: 23376522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal variability in trihalomethane and haloacetic acid concentrations in Massachusetts public drinking water systems.
    Parvez S; Rivera-Núñez Z; Meyer A; Wright JM
    Environ Res; 2011 May; 111(4):499-509. PubMed ID: 21316653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model development for predicting changes in DBP exposure concentrations during indoor handling of tap water.
    Chowdhury S; Rodriguez MJ; Serodes J
    Sci Total Environ; 2010 Sep; 408(20):4733-43. PubMed ID: 20655096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disinfection by-product formation following chlorination of drinking water: artificial neural network models and changes in speciation with treatment.
    Kulkarni P; Chellam S
    Sci Total Environ; 2010 Sep; 408(19):4202-10. PubMed ID: 20580059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating effects of bromide ions on trihalomethanes and developing model for predicting bromodichloromethane in drinking water.
    Chowdhury S; Champagne P; James McLellan P
    Water Res; 2010 Apr; 44(7):2349-59. PubMed ID: 20080279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disinfection byproduct regulatory compliance surrogates and bromide-associated risk.
    Kolb C; Francis RA; VanBriesen JM
    J Environ Sci (China); 2017 Aug; 58():191-207. PubMed ID: 28774609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk assessment on disinfection by-products of drinking water of different water sources and disinfection processes.
    Wang W; Ye B; Yang L; Li Y; Wang Y
    Environ Int; 2007 Feb; 33(2):219-25. PubMed ID: 17056115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of various disinfection byproducts in indoor swimming pool waters treated with different disinfection methods.
    Lee J; Jun MJ; Lee MH; Lee MH; Eom SW; Zoh KD
    Int J Hyg Environ Health; 2010 Nov; 213(6):465-74. PubMed ID: 20961810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and decomposition of new and unknown polar brominated disinfection byproducts during chlorination.
    Zhai H; Zhang X
    Environ Sci Technol; 2011 Mar; 45(6):2194-201. PubMed ID: 21323365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of disinfection by-products in tap water distribution systems and their associated health risk.
    Lee J; Kim ES; Roh BS; Eom SW; Zoh KD
    Environ Monit Assess; 2013 Sep; 185(9):7675-91. PubMed ID: 23446885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal variation in drinking water concentrations of disinfection by-products in IZMIR and associated human health risks.
    Baytak D; Sofuoglu A; Inal F; Sofuoglu SC
    Sci Total Environ; 2008 Dec; 407(1):286-96. PubMed ID: 18805568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perchlorate in tap water, groundwater, surface waters, and bottled water from China and its association with other inorganic anions and with disinfection byproducts.
    Wu Q; Zhang T; Sun H; Kannan K
    Arch Environ Contam Toxicol; 2010 Apr; 58(3):543-50. PubMed ID: 20162260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling daily variation of trihalomethane compounds in drinking water system, Houston, Texas.
    Chaib E; Moschandreas D
    J Hazard Mater; 2008 Mar; 151(2-3):662-8. PubMed ID: 17658688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of byproduct formation in waters treated with chlorine and iodine: relevance to point-of-use treatment.
    Smith EM; Plewa MJ; Lindell CL; Richardson SD; Mitch WA
    Environ Sci Technol; 2010 Nov; 44(22):8446-52. PubMed ID: 20964286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.