These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
749 related articles for article (PubMed ID: 21416621)
1. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. Sivula K; Le Formal F; Grätzel M ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621 [TBL] [Abstract][Full Text] [Related]
2. Water oxidation at hematite photoelectrodes: the role of surface states. Klahr B; Gimenez S; Fabregat-Santiago F; Hamann T; Bisquert J J Am Chem Soc; 2012 Mar; 134(9):4294-302. PubMed ID: 22303953 [TBL] [Abstract][Full Text] [Related]
3. Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water-Splitting Devices. Gurudayal ; John RA; Boix PP; Yi C; Shi C; Scott MC; Veldhuis SA; Minor AM; Zakeeruddin SM; Wong LH; Grätzel M; Mathews N ChemSusChem; 2017 Jun; 10(11):2449-2456. PubMed ID: 28371520 [TBL] [Abstract][Full Text] [Related]
4. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. Seabold JA; Choi KS J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661 [TBL] [Abstract][Full Text] [Related]
5. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device. Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535 [TBL] [Abstract][Full Text] [Related]
6. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. Sivula K; Zboril R; Le Formal F; Robert R; Weidenkaff A; Tucek J; Frydrych J; Grätzel M J Am Chem Soc; 2010 Jun; 132(21):7436-44. PubMed ID: 20443599 [TBL] [Abstract][Full Text] [Related]
7. Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation. Ling Y; Wang G; Wang H; Yang Y; Li Y ChemSusChem; 2014 Mar; 7(3):848-53. PubMed ID: 24493003 [TBL] [Abstract][Full Text] [Related]
8. Nanonet-based hematite heteronanostructures for efficient solar water splitting. Lin Y; Zhou S; Sheehan SW; Wang D J Am Chem Soc; 2011 Mar; 133(8):2398-401. PubMed ID: 21306153 [TBL] [Abstract][Full Text] [Related]
9. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting. Wang L; Nguyen NT; Schmuki P ChemSusChem; 2016 Aug; 9(16):2048-53. PubMed ID: 27348809 [TBL] [Abstract][Full Text] [Related]
10. Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Tamirat AG; Rick J; Dubale AA; Su WN; Hwang BJ Nanoscale Horiz; 2016 Jul; 1(4):243-267. PubMed ID: 32260645 [TBL] [Abstract][Full Text] [Related]
11. Surface aspects of sol-gel derived hematite films for the photoelectrochemical oxidation of water. Herrmann-Geppert I; Bogdanoff P; Radnik J; Fengler S; Dittrich T; Fiechter S Phys Chem Chem Phys; 2013 Feb; 15(5):1389-98. PubMed ID: 23247669 [TBL] [Abstract][Full Text] [Related]
12. Surface treatment of hematite photoanodes with zinc acetate for water oxidation. Xi L; Bassi PS; Chiam SY; Mak WF; Tran PD; Barber J; Chye Loo JS; Wong LH Nanoscale; 2012 Aug; 4(15):4430-3. PubMed ID: 22688799 [TBL] [Abstract][Full Text] [Related]
13. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials. Mayer MT; Du C; Wang D J Am Chem Soc; 2012 Aug; 134(30):12406-9. PubMed ID: 22800199 [TBL] [Abstract][Full Text] [Related]
14. Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting. Mao A; Park NG; Han GY; Park JH Nanotechnology; 2011 Apr; 22(17):175703. PubMed ID: 21411913 [TBL] [Abstract][Full Text] [Related]
15. The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. Barroso M; Cowan AJ; Pendlebury SR; Grätzel M; Klug DR; Durrant JR J Am Chem Soc; 2011 Sep; 133(38):14868-71. PubMed ID: 21861508 [TBL] [Abstract][Full Text] [Related]
16. Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes. Zhong DK; Sun J; Inumaru H; Gamelin DR J Am Chem Soc; 2009 May; 131(17):6086-7. PubMed ID: 19354283 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical impedance study of the hematite/water interface. Shimizu K; Lasia A; Boily JF Langmuir; 2012 May; 28(20):7914-20. PubMed ID: 22540260 [TBL] [Abstract][Full Text] [Related]
18. Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells. Ihssen J; Braun A; Faccio G; Gajda-Schrantz K; Thöny-Meyer L Curr Protein Pept Sci; 2014; 15(4):374-84. PubMed ID: 24678669 [TBL] [Abstract][Full Text] [Related]
19. Iron based photoanodes for solar fuel production. Bassi PS; Gurudayal ; Wong LH; Barber J Phys Chem Chem Phys; 2014 Jun; 16(24):11834-42. PubMed ID: 24469680 [TBL] [Abstract][Full Text] [Related]
20. Immobilization of a Molecular Ruthenium Catalyst on Hematite Nanorod Arrays for Water Oxidation with Stable Photocurrent. Fan K; Li F; Wang L; Daniel Q; Chen H; Gabrielsson E; Sun J; Sun L ChemSusChem; 2015 Oct; 8(19):3242-7. PubMed ID: 26315677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]