These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 21416947)

  • 1. [Response of renal medullary cells to hypertonic stress].
    Yang H; Yang JC; Guan YF
    Sheng Li Ke Xue Jin Zhan; 2010 Aug; 41(4):287-91. PubMed ID: 21416947
    [No Abstract]   [Full Text] [Related]  

  • 2. On the adaptation of renal cells to hypertonicity.
    Berl T
    Am J Kidney Dis; 2000 Jun; 35(6):xlvii-l. PubMed ID: 10877726
    [No Abstract]   [Full Text] [Related]  

  • 3. Cellular response to osmotic stress in the renal medulla.
    Beck FX; Burger-Kentischer A; Müller E
    Pflugers Arch; 1998 Nov; 436(6):814-27. PubMed ID: 9799394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypertonic stress in the kidney: a necessary evil.
    Kwon MS; Lim SW; Kwon HM
    Physiology (Bethesda); 2009 Jun; 24():186-91. PubMed ID: 19509128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three GADD45 isoforms contribute to hypertonic stress phenotype of murine renal inner medullary cells.
    Chakravarty D; Cai Q; Ferraris JD; Michea L; Burg MB; Kültz D
    Am J Physiol Renal Physiol; 2002 Nov; 283(5):F1020-9. PubMed ID: 12372778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypertonic stress response.
    Dmitrieva NI; Burg MB
    Mutat Res; 2005 Jan; 569(1-2):65-74. PubMed ID: 15603752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Urea stress is more akin to EGF exposure than to hypertonic stress in renal medullary cells.
    Tian W; Cohen DM
    Am J Physiol Renal Physiol; 2002 Sep; 283(3):F388-98. PubMed ID: 12167588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell survival in the hostile environment of the renal medulla.
    Neuhofer W; Beck FX
    Annu Rev Physiol; 2005; 67():531-55. PubMed ID: 15709969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The gamma-subunit of Na-K-ATPase is incorporated into plasma membranes of mouse IMCD3 cells in response to hypertonicity.
    Pihakaski-Maunsbach K; Tokonabe S; Vorum H; Rivard CJ; Capasso JM; Berl T; Maunsbach AB
    Am J Physiol Renal Physiol; 2005 Apr; 288(4):F650-7. PubMed ID: 15572522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic evaluation of renal medullary electrolytes from measurement of tissue electrical admittance.
    Sadowski J
    Acta Physiol Pol; 1989; 40(3):329-37. PubMed ID: 2518368
    [No Abstract]   [Full Text] [Related]  

  • 11. Osmoadaptation-related genes in inner medulla of mouse kidney using microarray.
    Yoshida T; Müller E; Stears R; Shirota S; Tsuchiya K; Akiba T; Gullans SR
    Biochem Biophys Res Commun; 2004 Sep; 322(1):250-7. PubMed ID: 15313198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic hyperosmolarity mediates constitutive expression of molecular chaperones and resistance to injury.
    Santos BC; Pullman JM; Chevaile A; Welch WJ; Gullans SR
    Am J Physiol Renal Physiol; 2003 Mar; 284(3):F564-74. PubMed ID: 12409277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How do kidney cells adapt to survive in hypertonic inner medulla?
    Berl T
    Trans Am Clin Climatol Assoc; 2009; 120():389-401. PubMed ID: 19768191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Changes in the structures of the kidney medullary layer in rats during adaptation to high altitude].
    Iangalycheva EA; Zakirov DZ; Panavas UV; Iunusov MN; Vishnevskiĭ AA
    Aviakosm Ekolog Med; 1995; 29(3):55-7. PubMed ID: 7550173
    [No Abstract]   [Full Text] [Related]  

  • 15. Acute increases of renal medullary osmolality stimulate endothelin release from the kidney.
    Boesen EI; Pollock DM
    Am J Physiol Renal Physiol; 2007 Jan; 292(1):F185-91. PubMed ID: 16912066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of IMCD3 cells to hypertonic challenges as analyzed by electron microscopy.
    Pihakaski-Maunsbach K; Nonaka S; Vorum H; Maunsbach AB
    J Electron Microsc (Tokyo); 2010; 59(6):481-94. PubMed ID: 20670932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Interstitial cells of the renal medullary substance under certain functional loads].
    Sokolova RI; Vikhert AM
    Arkh Patol; 1974; 36(2):41-7. PubMed ID: 4375456
    [No Abstract]   [Full Text] [Related]  

  • 18. H+/myo-inositol transporter genes, hmit-1.1 and hmit-1.2, have roles in the osmoprotective response in Caenorhabditis elegans.
    Kage-Nakadai E; Uehara T; Mitani S
    Biochem Biophys Res Commun; 2011 Jul; 410(3):471-7. PubMed ID: 21679696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival in hostile environments: strategies of renal medullary cells.
    Neuhofer W; Beck FX
    Physiology (Bethesda); 2006 Jun; 21():171-80. PubMed ID: 16714475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pH-indpendent effect of external bicarbonate ions on the osmotic volume response of renal medullary cells [proceedings].
    Law RO
    J Physiol; 1980 Jan; 298():27P-28P. PubMed ID: 7359402
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.