These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 21417264)

  • 1. Strategies for Neoglycan conjugation to human acid α-glucosidase.
    Zhou Q; Stefano JE; Harrahy J; Finn P; Avila L; Kyazike J; Wei R; Van Patten SM; Gotschall R; Zheng X; Zhu Y; Edmunds T; Pan CQ
    Bioconjug Chem; 2011 Apr; 22(4):741-51. PubMed ID: 21417264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbohydrate-remodelled acid alpha-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice.
    Zhu Y; Li X; McVie-Wylie A; Jiang C; Thurberg BL; Raben N; Mattaliano RJ; Cheng SH
    Biochem J; 2005 Aug; 389(Pt 3):619-28. PubMed ID: 15839836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient therapy for refractory Pompe disease by mannose 6-phosphate analogue grafting on acid α-glucosidase.
    Basile I; Da Silva A; El Cheikh K; Godefroy A; Daurat M; Harmois A; Perez M; Caillaud C; Charbonné HV; Pau B; Gary-Bobo M; Morère A; Garcia M; Maynadier M
    J Control Release; 2018 Jan; 269():15-23. PubMed ID: 29108866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four unreported types of glycans containing mannose-6-phosphate are heterogeneously attached at three sites (including newly found Asn 233) to recombinant human acid alpha-glucosidase that is the only approved treatment for Pompe disease.
    Park H; Kim J; Lee YK; Kim W; You SK; Do J; Jang Y; Oh DB; Il Kim J; Kim HH
    Biochem Biophys Res Commun; 2018 Jan; 495(4):2418-2424. PubMed ID: 29274340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycan structure determinants for cation-independent mannose 6-phosphate receptor binding and cellular uptake of a recombinant protein.
    Zhou Q; Avila LZ; Konowicz PA; Harrahy J; Finn P; Kim J; Reardon MR; Kyazike J; Brunyak E; Zheng X; Patten SM; Miller RJ; Pan CQ
    Bioconjug Chem; 2013 Dec; 24(12):2025-35. PubMed ID: 24161263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-glycans of recombinant human acid alpha-glucosidase expressed in the milk of transgenic rabbits.
    Jongen SP; Gerwig GJ; Leeflang BR; Koles K; Mannesse ML; van Berkel PH; Pieper FR; Kroos MA; Reuser AJ; Zhou Q; Jin X; Zhang K; Edmunds T; Kamerling JP
    Glycobiology; 2007 Jun; 17(6):600-19. PubMed ID: 17293352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction of glycogen storage disease type II by enzyme replacement with a recombinant human acid maltase produced by over-expression in a CHO-DHFR(neg) cell line.
    Martiniuk F; Chen A; Donnabella V; Arvanitopoulos E; Slonim AE; Raben N; Plotz P; Rom WN
    Biochem Biophys Res Commun; 2000 Oct; 276(3):917-23. PubMed ID: 11027569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of recombinant human acid α-glucosidase with high-mannose glycans in gnt1 rice for the treatment of Pompe disease.
    Jung JW; Huy NX; Kim HB; Kim NS; Van Giap D; Yang MS
    J Biotechnol; 2017 May; 249():42-50. PubMed ID: 28363873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conjugation of mannose 6-phosphate-containing oligosaccharides to acid alpha-glucosidase improves the clearance of glycogen in pompe mice.
    Zhu Y; Li X; Kyazike J; Zhou Q; Thurberg BL; Raben N; Mattaliano RJ; Cheng SH
    J Biol Chem; 2004 Nov; 279(48):50336-41. PubMed ID: 15383547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyaluronidase increases the biodistribution of acid alpha-1,4 glucosidase in the muscle of Pompe disease mice: an approach to enhance the efficacy of enzyme replacement therapy.
    Matalon R; Surendran S; Campbell GA; Michals-Matalon K; Tyring SK; Grady J; Cheng S; Kaye E
    Biochem Biophys Res Commun; 2006 Nov; 350(3):783-7. PubMed ID: 17027913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replacing acid alpha-glucosidase in Pompe disease: recombinant and transgenic enzymes are equipotent, but neither completely clears glycogen from type II muscle fibers.
    Raben N; Fukuda T; Gilbert AL; de Jong D; Thurberg BL; Mattaliano RJ; Meikle P; Hopwood JJ; Nagashima K; Nagaraju K; Plotz PH
    Mol Ther; 2005 Jan; 11(1):48-56. PubMed ID: 15585405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycoengineered acid alpha-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease.
    Zhu Y; Jiang JL; Gumlaw NK; Zhang J; Bercury SD; Ziegler RJ; Lee K; Kudo M; Canfield WM; Edmunds T; Jiang C; Mattaliano RJ; Cheng SH
    Mol Ther; 2009 Jun; 17(6):954-63. PubMed ID: 19277015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete correction of acid alpha-glucosidase deficiency in Pompe disease fibroblasts in vitro, and lysosomally targeted expression in neonatal rat cardiac and skeletal muscle.
    Pauly DF; Johns DC; Matelis LA; Lawrence JH; Byrne BJ; Kessler PD
    Gene Ther; 1998 Apr; 5(4):473-80. PubMed ID: 9614571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endolysosomal N-glycan processing is critical to attain the most active form of the enzyme acid alpha-glucosidase.
    Selvan N; Mehta N; Venkateswaran S; Brignol N; Graziano M; Sheikh MO; McAnany Y; Hung F; Madrid M; Krampetz R; Siano N; Mehta A; Brudvig J; Gotschall R; Weimer JM; Do HV
    J Biol Chem; 2021; 296():100769. PubMed ID: 33971197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-glycan Remodeling Using Mannosidase Inhibitors to Increase High-mannose Glycans on Acid α-Glucosidase in Transgenic Rice Cell Cultures.
    Choi HY; Park H; Hong JK; Kim SD; Kwon JY; You S; Do J; Lee DY; Kim HH; Kim DI
    Sci Rep; 2018 Oct; 8(1):16130. PubMed ID: 30382146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Safety and efficacy of recombinant acid alpha-glucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial.
    Klinge L; Straub V; Neudorf U; Schaper J; Bosbach T; Görlinger K; Wallot M; Richards S; Voit T
    Neuromuscul Disord; 2005 Jan; 15(1):24-31. PubMed ID: 15639117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved efficacy of gene therapy approaches for Pompe disease using a new, immune-deficient GSD-II mouse model.
    Xu F; Ding E; Liao SX; Migone F; Dai J; Schneider A; Serra D; Chen YT; Amalfitano A
    Gene Ther; 2004 Nov; 11(21):1590-8. PubMed ID: 15356673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipidic Nanoparticles Comprising Phosphatidylinositol Mitigate Immunogenicity and Improve Efficacy of Recombinant Human Acid Alpha-Glucosidase in a Murine Model of Pompe Disease.
    Schneider JL; Dingman RK; Balu-Iyer SV
    J Pharm Sci; 2018 Mar; 107(3):831-837. PubMed ID: 29102549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme replacement therapy in classical infantile pompe disease: results of a ten-month follow-up study.
    Klinge L; Straub V; Neudorf U; Voit T
    Neuropediatrics; 2005 Feb; 36(1):6-11. PubMed ID: 15776317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugar-binding activity of the MRH domain in the ER alpha-glucosidase II beta subunit is important for efficient glucose trimming.
    Hu D; Kamiya Y; Totani K; Kamiya D; Kawasaki N; Yamaguchi D; Matsuo I; Matsumoto N; Ito Y; Kato K; Yamamoto K
    Glycobiology; 2009 Oct; 19(10):1127-35. PubMed ID: 19625484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.