These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21417282)

  • 1. In vitro fermentation of bacterial cellulose composites as model dietary fibers.
    Mikkelsen D; Gidley MJ; Williams BA
    J Agric Food Chem; 2011 Apr; 59(8):4025-32. PubMed ID: 21417282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria.
    Bindelle J; Buldgen A; Delacollette M; Wavreille J; Agneessens R; Destain JP; Leterme P
    J Anim Sci; 2009 Feb; 87(2):583-93. PubMed ID: 18791157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers.
    Kaur A; Rose DJ; Rumpagaporn P; Patterson JA; Hamaker BR
    J Food Sci; 2011; 76(5):H137-42. PubMed ID: 22417432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative effects of cellulose and soluble fibers (pectin, konjac glucomannan, inulin) on fecal water toxicity toward Caco-2 cells, fecal bacteria enzymes, bile acid, and short-chain fatty acids.
    Chen HL; Lin YM; Wang YC
    J Agric Food Chem; 2010 Sep; 58(18):10277-81. PubMed ID: 20799709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of glucose fermentation on fiber digestion by ruminal microorganisms in vitro.
    Piwonka EJ; Firkins JL
    J Dairy Sci; 1996 Dec; 79(12):2196-206. PubMed ID: 9029358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites.
    Pommet M; Juntaro J; Heng JY; Mantalaris A; Lee AF; Wilson K; Kalinka G; Shaffer MS; Bismarck A
    Biomacromolecules; 2008 Jun; 9(6):1643-51. PubMed ID: 18491942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vegetable fiber fermentation by human fecal bacteria: cell wall polysaccharide disappearance and short-chain fatty acid production during in vitro fermentation and water-holding capacity of unfermented residues.
    Bourquin LD; Titgemeyer EC; Fahey GC
    J Nutr; 1993 May; 123(5):860-9. PubMed ID: 8387579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural differences among alkali-soluble arabinoxylans from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) brans influence human fecal fermentation profiles.
    Rose DJ; Patterson JA; Hamaker BR
    J Agric Food Chem; 2010 Jan; 58(1):493-9. PubMed ID: 20000566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative in vitro fermentation activity in the canine distal gastrointestinal tract and fermentation kinetics of fiber sources.
    Bosch G; Pellikaan WF; Rutten PG; van der Poel AF; Verstegen MW; Hendriks WH
    J Anim Sci; 2008 Nov; 86(11):2979-89. PubMed ID: 18599660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary fiber from coffee beverage: degradation by human fecal microbiota.
    Gniechwitz D; Reichardt N; Blaut M; Steinhart H; Bunzel M
    J Agric Food Chem; 2007 Aug; 55(17):6989-96. PubMed ID: 17658822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The endogenous polysaccharide utilization rate of mixed ruminal bacteria and the effect of energy starvation on ruminal fermentation rates.
    Van Kessel JS; Russell JB
    J Dairy Sci; 1997 Oct; 80(10):2442-8. PubMed ID: 9361216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-chain fatty acid production and fiber degradation by human colonic bacteria: effects of substrate and cell wall fractionation procedures.
    Bourquin LD; Titgemeyer EC; Garleb KA; Fahey GC
    J Nutr; 1992 Jul; 122(7):1508-20. PubMed ID: 1320114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: use of cannulated pigs and in vitro fermentation.
    Anguita M; Canibe N; Pérez JF; Jensen BB
    J Anim Sci; 2006 Oct; 84(10):2766-78. PubMed ID: 16971578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wheat cell walls and constituent polysaccharides induce similar microbiota profiles upon
    Lu S; Mikkelsen D; Yao H; Williams BA; Flanagan BM; Gidley MJ
    Food Funct; 2021 Feb; 12(3):1135-1146. PubMed ID: 33432311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions.
    Tan MS; Moore SC; Tabor RF; Fegan N; Rahman S; Dykes GA
    BMC Microbiol; 2016 Sep; 16():212. PubMed ID: 27629769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production and in vitro fermentation of soluble, non-digestible, feruloylated oligo- and polysaccharides from maize and wheat brans.
    Yang J; Maldonado-Gómez MX; Hutkins RW; Rose DJ
    J Agric Food Chem; 2014 Jan; 62(1):159-66. PubMed ID: 24359228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ileal effluent as a fermentation substrate: implications for butyrate production in the colon.
    Robertson JA; Ryden P; Botham L; Ring S
    J Environ Pathol Toxicol Oncol; 1999; 18(2):141-6. PubMed ID: 15281226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary fibers from mushroom sclerotia: 3. In vitro fermentability using human fecal microflora.
    Wong KH; Wong KY; Kwan HS; Cheung PC
    J Agric Food Chem; 2005 Nov; 53(24):9407-12. PubMed ID: 16302755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soluble xyloglucan generates bigger bacterial community shifts than pectic polymers during in vitro fecal fermentation.
    Moro Cantu-Jungles T; do Nascimento GE; Zhang X; Iacomini M; Cordeiro LMC; Hamaker BR
    Carbohydr Polym; 2019 Feb; 206():389-395. PubMed ID: 30553337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.